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SOFTWARE QUALITY ASSURANCE:
PRACTICAL PROCEDURES TO MEET CSA STANDARDS

A report prepared by M.B. Carver. Work completed under Atomic Energy Control Board
contract 96-7, Software Quality Assurance Procedures. Contract Officer Dr. M. El-Hawary.

ABSTRACT

Standards for software quality assurance (SQA) are a requisite for nuclear safety analysis, and
organisations involved in these analyses are required to document their SQA procedures. The
intent of this report is to provide a stand-alone document that, following the intent of the
CSA/SQA standards and using the same definitions of those documents, provides pragmatic
guidelines for writing a set of procedures that would meet AECB requirements for the control
and application of computer programs used in safety analysis. Since some procedures are already
in place in the industry, the document can be used to quickly assess to what degree an existing
procedure conforms to the requirements.

RESUME

Les normes d’assurance de la qualité des logiciels sont essentielles pour 1’analyse de siireté
nucléaire, et les organismes qui participent a ces analyses sont tenus de documenter leurs
procédures d’assurance de la qualité des logiciels. Le but du présent rapport est de fournir un
document unique qui, suivant 1’objectif des normes d’assurance de la qualité des logiciels de la
CSA et utilisant les mémes définitions que celles de ces documents, donnerait des lignes
directrices pratiques pour la rédaction d’un ensemble de procédures répondant aux exigences de
la CCEA pour le contrdle et ’application de programmes informatiques utilisés pour I’analyse de
stireté. Comme certaines procédures sont déja en place au sein de I’industrie, le document peut
servir a évaluer rapidement dans quelle mesure des procédures existantes respectent les
exigences.

DISCLAIMER

The Atomic Energy Control Board is not responsible for the accuracy of the statements made or
opinions esxpressed in this publication and neither the Board nor the authors assume liability
with respect to any damage or loss incurred as a result of the use made of the infomation
contained in this publication.
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1. Background

1.1 AECB Requirements for Seftware Quality Assurance

The AECB Consultative Document C-6.R1 [1], entitled Requirements for the Safety Analysis of CANDU
Nuclear Power Plants, states that a quality assurance program shall be established in accordance with
CAN/CSA-N286.0-92 and CAN/CSA-286.2-86, modified for application to safety analysis.

With respect to reporting requirements for safety analyses, the document calls for an anditable quality
assurance program, and sufficient docamentation to permit verification of all analyses by an independent
team of qualified analysts. With respect to computer codes utilised, the document further states the
following :

“All computer codes shall be documented in accordance with codes and standards that are agreed to by the
AECB.”

“This documentation should include a functional specification, quality assurance plan, a configuration
management plan, a version description, a user’s manual, training material, a software design description,
and validation reports, computer listings and data.”.

This document further relates these requirements to the CSA standards.

1.2 The CSA Standards

While there are a number of standards on general quality assurance (QA) and on software quality
assurance (SQA) in particular, the CSA standards cover most necessary attributes of an effective quality
assurance program. In particular the Canadian Standard Association series of N286 documents define
quality assurance standards for activities related to a nuclear power plant project.

CAN/CSA N286.0-92 Covers Overall Quality Assurance

CAN/CSA N286.2-86 Covers Design Quality Assurance

CAN/CSA N286.1,2,3,4,5 Cover respectively Procurement, Construction, Commissioning, and Operation
CSA N286.7-94 Covers Software Quality Assurance

CSA N286.7-94 has been issued as a preliminary standard entitled: Quality Assurance of Analytical,
Scientific and Design Computer Programs for Nuclear Power Plants. The standard addresses computer
programs for analytical, scientific and design applications for safety-related systems and components, and
applies to programs originating in the nuclear industry and programs procured from external vendors.
This standard has been under development for several years and is still under going revision.

A draft revision dated March 1996 has also been consulted in preparing this document, this revision is
referred to as N286.7-96. Normally, a draft revision would not be considered until it is issued, however
N286.7-96 is considered important for two major changes:

i) the 96 revision has substantially condensed the requirements and eliminated repetition and
inconsistencies between the sections on procedural matters and the section on documentation.
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ii) this revision includes guidelines on the control of computer programs that were developed prior to
1996, but are undergoing further development. (N286.7-94 merely states that such programs should be
treated as special cases.)

The first change is useful to the goal of writing practical procedures. The second is essential, as most of
the codes used in safety analysis fall in this category, and it is necessary to plan and control them in a
manner similar to that required for design and development of new software. While the provision of these
guidelines is a useful step, this version of the standard considers all pre-existing software to be exempt
from the design and development documentation that is required for new software. This appears not to

impose any quality criteria on existing programming, which is somewhat unsatisfactory.

The AECB finds that the 96 version of the N286 standard does not yet fully satisfy their requirements for
safety analysis, but have requested that this document address this standard as the most practical currently
available for safety analysis.

The CAN/CSA Q396 series (1989) has four documents that address SQA programs for i) the development
of Software and ii) the use of Previously developed software in a) Critical Applications and b) Non-
Critical Applications. These standards cover many of the topics included in N286.7, but concentrate more
on the SQA aspects of the customer client relationships.

This document refers to CSA N286.7 and the CSA Q396 series collectively as the CSA SQA standards.

1.3 Software Quality Assurance Procedures

A requirement under the CSA series, in fact a requirement essential to all software quality assurance
standards, is that each organization must establish the procedures it follows for sofiware quality assurance
to control work with computer programs in a manner consistent with the standard. The development and
documentation of SQA procedures is the necessary first step in the SQA trail, equally important is the
implementation of these procedures to ensure that all computing work not merely follows the procedures,
but can be clearly demonstrated to do so.

While the CSA SQA standards have been available in some form for several years, the implementation of
their recommendations within the industry is still in its formative stages. It is fair to say that most
computer codes now have some procedures in place governing their development and use. Certainly some
of the major codes are now developed and applied under clearly established software quality assurance
procedures, however many others have only limited procedures defined. Since N286.7 has been evolving,
the SQA procedures that do exist do not necessarily follow all its recommendations in a satisfactory
manner, hence this document can be used to review existing procedures and improve them where
necessary

1.4 Objectives of Software Quality Assurance Procedures

The objectives of such procedures are to ensure that the safety analyses performed are appropriate, and
are conducted by qualified personnel who use quality assured computer programs in an appropriate
manner, and produce results that are credible, and can be reproduced and verified.
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1.5 Purpose and Scope of This Document

The standards call for SQA procedures, but are not specific about their content or format. The purpose of
this document is to provide pragmatic guidelines for writing a set of procedures that satisfy AECB
requirements for the control and application of computer programs used in safety analysis, following the
structure and intent of the CSA/SQA standards and using the same definitions of those documents. The
document will be as brief as practicable in that it will not reproduce the text of the standards unless
necessary for clarification.

It is hoped the document will also ease the process of creation, review and implementation of these
procedures by defining a pragmatic approach suitable for implementation in a manner compatible with the
everyday working environment in the industry. To this end the document contains a recommended format
for an SQA procedures document, a discussion of each item in the contents, and basic templates for
forms that address the requirements of the standards.

Since some procedures are already in place in the industry, the document also provides a format that can
be used to quickly assess to what degree an existing procedure conforms to the requirements.

The document addresses specific items required by the standards and also includes recommendations for
practice where the standards are not specific. Occasionally a recommendation is included for a good
practice in an area not specifically addressed by the standards.

1.6 Structure of this Document

Section 2 of this document gives a recommended format for writing SQA procedures, with some
discussion of each topic. All the CSA SQA standards were consulted while preparing the document.
However as each standard has a somewhat different approach, the decision was made to align the topic
sequence with that of N286.7, and reference the other standards. Appendix A contains a summary of the
relationship between the topic sequence and all the CSA SQA standards.

In section 2, the topic sequence corresponds closely to N286.7, but some topics have been combined
differently in an attempt to clarify their relationship.

Section 3 of this report contains a sample procedures document that was prepared by following the
recommendations of Section 3.

The Appendices contain background information and a number of example forms that could be used to
address some of the requirements of the standard. The intent in providing the forms is not to prescribe
format, but merely to illustrate that the necessary SQA records can be documented in a relatively concise
manner.

1.7 Definitions of Terms used in this Document

Appendix B lists definitions of terms used in this document. It contains all the definitions from N286.7 .
Some additional definitions are included to clarify the current document, these appear in italic font.




4 MBC.AECB.01
96/10

1.8 SQA Procedures and Company Organisation

It is recognised that in large organisations, it may not be practical to get every unit of the organisation to
follow exactly the same detailed procedures for software quality assurance, due to differences in mandate
and current status of SQA amongst the units. It is expected that the organisation as a whole, or major
divisions of the organisation will have a Quality Assurance Manual, whereas the functional units will
develop and document procedures for software quality assurance.

This document lays out the necessary components required to establish procedures for the control and use
of software in a particular functional unit. The definition of such a unit and its mandate is the
responsibility of the organisation itself, but for the purposes of this document, the unit will be regarded as
a working group that has the mandate to control the development and/or management and/or application
of one or more computer codes.

The development, management and application of computer codes are in fact three distinct disciplines,
and normally should be undertaken by different staff groups, although these groups may have common
management.
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2. Recommended Format and Contents for a Unit SQA Procedures Document

This section outlines the recommended format and content of a Unit SQA Procedures Document, i.e. a
document describing SQA Procedures for a functional unit. Discussion is provided for each topic. For
brevity, the Unit SQA Procedures Document will be referred to as USQAPD. Section 3 has a sample
USQAPD that follows the same format.

In this section, items that appear in regular typescript are intended to represent the standards, either as
reiteration or paraphrase of the intent.

Items that are not explicitly addressed by the standards, but are mentioned in C6 [1] or are merely
included here for rational continuity of the document, are included in italics.

Title Page

The title page should be in the appropriate format for the organisation, with necessary identifications and
approvalis.

2.1 Purpose and Scope

State that the purpose of the document is to record the procedures established and implemented in the unit
to manage all aspects of software quality assurance in the application and/or management and/or
development of computer codes for safety analyses.

Add a brief, clear statement of the material covered in the document.

2.2 Definitions

The same approach taken in 1.7 above is recommended..

2.3 Applicable Reference Documents

The reference documents should include the CSA standards in 1.2 above and/or any other standards that
the procedures are designed to follow.
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2.4 Responsibilities and Unit Organisation

2.4.1 Mandate

This section should briefly outline the following attributes of the unit
- unit title

- identification of unit within the structure of the parent organisation
- unit mandate involving computer programs

- associated fields of specialisation

- customers and/or stakeholders

2.4.2 Responsibilities and Roles

This sub-section should define the following
- organisation chart for the unit
- list of position titles, with necessary qualifications
- definition of key roles, including for each role
list of responsibilities
. qualifications or traini ired

The standards state that the development and/or application of computer codes must be undertaken only
by qualified personnel. 7he USQAPD should specify minimum qualifications for each key role.

Typical roles in sofiware management are given in Appendix C, together with typical responsibilities.
The key roles identified should be analogous to those defined in Appendix C, and responsibilities should
be defined in similar terms.

2.5 Requirements for Computer Programs according to Classification

It is most unlikely that a computer code will be designed, written as planned, then verified, validated and
issued without encountering a need for some change that was not anticipated in the original plan. Hence
the need arises to develop and implement a version control system that defines a sequence of versions of a
computer program that is under development.

Systematically documented control of a computer code is required to establish an unequivocal definition of
all attributes of every version of the code, and a precise and traceable sequence of modifications from one
version to the next. This also provides clear means of recovering previous versions by removing
modifications. ( The development and management of a code is a separate discipline from the application
of a code. Application is discussed in section 2.10.)

This section of the USQAPD should define, for each type of computer code for which the unit is
responsible, the level of control that the standards require. This involves interpretation of the specific
requirements of section 5 of N286.7 for each computer code. As the required level of control determines
all the details of the necessary SQA procedures, the remainder of section 2 in this document contains
recommended guidelines for establishing the classification of computer codes, and determining the
requirements for each classification.
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2.5.1 Version identification

Version identification is an integral part of configuration management, a topic discussed in section 7 of
N286.7. However, the term is introduced here in this document, as much of the discussion in this section
of the standards is best explained in terms of versions.

A version of a computer program is a uniquely defined set of instructions, hence it may be argued , as in
N286.7-96, that any change whatsoever to a computer program creates a new version, that should be
identified as such.

In practical application it is preferable to use the word modification to identify an individual change, and
reserve the term version to signify a particular stage of program development identified as a target or
milestone in the development plan. Hence a number of separate or related modifications might be
planned to convert the program from its current version to the next planned version.

The version identifier is a definitive part of the quality assurance records, and should appear
prominently in the output from the code, and in all documents referring to the code.

There is no mandatory style for version identification, and a number of satisfactory schemes exist.

The following example uses a possible version identification scheme that has a hierarchy of several
levels of identification as follows:

CODENAME Vx,Ry Mz

- Vx: Version x - a change in version number x is planned whenever changes
are made that require the data input format to change
- this requires an associated revision of the user manual

- Ry: Revision y - a change in revision number is planned whenever changes
are made that cause the output format to change

- Mz: Modification z - a new modification number is given to each modification
task that is defined through the change control system

The development plan could identify any VxRy as a target version that represents a particular
stage in the development process. The targeted versions could be further identified as one of
three levels
i) base version - a first prototype or reference version
ii) development version - having restricted access for testing and v&v purposes
iii) production version - being released for application

2.5.2 Classification

In this section, the USQAPD should include a catalogue of the computer programs that fall within the
unit's mandate. The catalog should list each computer program that the unit applies for the purpose of
safety analyses, or that the unit develops and/or modifies and/or manages for use in safety analyses done
by other units. The catalog should classify each computer program according to the criteria discussed
below.

Although the Q396 standards specifically address existing computer codes and codes under development,
N286.7-94 concentrates more on the development life cycle involved in starting new computer programs,
and mentions existing computer codes that are to be used either unchanged or with modifications as
special cases. Most of the programs in use in the nuclear industry have a history of parallel development
and application. It is extremely important that an appropriate level quality assurance should be applied to
all such codes.
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Recognising this, N286.7-96 has established more specific rules regarding management of this type of
perpetual code development. It clear that such rules are essential to establish credibility in the application
of this special category of codes.

For brevity, this document recommends the use of the term “ type” to distinguish the above variations in
computer code status, and that the USQAPD follow the intent of N286.7-96, by identifying each
computer code that falls within the mandate of the unit as belonging to one of three types:

Type 1 : Computer Programs that were developed prior to the implementation of the standard addressed
by the procedures, and that have not been changed.

Type 2: Computer Programs that were developed prior to the implementation of the standard addressed
by the procedures, and that are undergoing any significant change.

Type 3. New Computer programs under Development

Significant change is defined in N286.7-96 as change in any of:
theoretical background
solution technique
calculation capability
data structure
embedded data in correlations
program structure
programming language
computer system assembler or compiler

The intended use of a particular computer program determines which CSA standard is applicable. This
document recommends that the term “category” be used to classify programs according to usage:

Cutegory Usage Applicable Standard
Category ] Software used in Critical Applications CSAQ396.1
Category 11 Software used in Safety Related Applications CSA N286.7
CategoryIll  Non-Critical Software CSA Q396.2

The definitions of Critical, Non-Critical and Safety Related Usage are included in Appendix B, as given
by the standards.

As most computer programs currently used in safety analysis are category II, type 2, this document will
Jocus primarily on this group, however other types and categories are discussed briefly.

2.5.3 Control of existing (Type 1) Software

In N286.7, older software, i.e. software that was developed prior to the issue of the standard and has not
changed since, is specifically exempted from all of section 2.6 below, concerning program design and also
from claunse 2.11.2, that concerns documentation of program design. By implication, it is also exempted
from clause 2.8 ( change control ) and much of 2.7 ( configuration control ). The AECB do not accept all
these exemptions, however to satisfy the standard it is sufficient to identify the configuration of type 1
software by the following:

Program Name, Version and Version date

Program Abstract ( including origin of program, hardware platform and system software)
User Manual

Theory Manual

Validation Report
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2.5.4 Control of existing software requiring modifications (Zype2)

If an existing computer program requires modification, it is first essential to clearly define a base version
of the code before any modifications are initiated. This base version must be established and controlled
as type 1 software and must have all the above attributes. The subsequent version which contains the
planned changes will become fype 2 sofiware.

The standard states that all significant changes must then be planned and implemented in the same
manner as new software under development (type 3).

The USQAPD should require documentation of the attributes of the base version, and contain the
procedures for planning and control of new developments.

2.5.5 Control of new software under development (Type 3)

New software must be developed in a controlled manner through every stage of the computer program
life-cycle. The process is discussed in detail in N286.7-94 and -96. The following section retains the
requirements of the standard, but attempts to condense these in a manner that is easier to follow. In
summary the process consists of the following three components, each of which require associated
documents.

Program Design, Development and Verification
Configuration Management and Change Control
Validation

These topics are discussed in the following sections:
2.6 Program Design and Development

The design and development process for a new computer program ( or for significant changes to an
existing program ) should address and document each component of the following sequence:

i) Problem definition

ii) Requirements Specification

iii) Development Plan

iv) Theoretical Basis

v) Program design

vi) Coding

vii) Coding Review

viii)  Code output requirements

ix) Verification

X) Validation

xi) Issue of the First Production Version and its associated Documentation
xii) Configuration management and change control

For new software (fype 3) , the standards require advance planning such that the production, review and
verification of detailed documents covering items i) to v) is completed before any coding is commenced.
These documents will be substantial. The verification and validation stages should also be addressed in

the planning document.
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For existing programs requiring significant change (fype 2) , the same components should be addressed,
however for modest changes, the documentation will be less bulky.

The amount of detail required in this section is proportional to the magnitude of modification planned. As
a minimum the USQAPD should clearly state the sequence i)to xi), and provide minimum specifications
Jor the document that will accompany each step of that sequence. Following the topical structure of the
standard, documentation is addressed specifically in section 2.11.

For type 3 sofiware, the development plan may call for a series of target development versions that
precede the first production version. If so, the first target version should be established as a base version
and any ongoing changes should be implemented under configuration management.

If the development plan addresses only one target version, that first production version should be frozen
as a base version and established as a type 1 program, and any further development not addressed in the
original development plan would continue under configuration management and change control as type 2
modifications.

2.6.1 Coding Guidelines

Coding practice itself is not covered by an explicit part of the standard, however the standards do suggest
some recommended practices. Appendix D has the list of recommended practices from N286.7, also
reference [2] in the bibliography addresses coding practice.

Code output is not covered by an explicit part of the standard, however it is recommended here that there
be three mandatory components in the output of any controlled code:

i) version identification should appear prominently on all output

ii) the code should print a condensation of the program abstract as an initial banner page

iii) all input data files should be reproduced verbatim in the initial output from the code.

2.7 Configuration Management and Change Control

Configuration management is the process of identifying configuration components, and maintaining the
integrity and traceability of the arrangement of the components of a computer program. It comprises the
sub-processes of:

i) version identification: identifying the configuration as a specific collection of computer
program components that define a selected version of a particular computer
program package operating on a given system as a specific product

ii) version contrel: maintaining the integrity of that product such that results from a given
set of input data will always be reproducible.

iii) change control: ensuring that any changes to that product are implemented in a
manner consistent with sofiware quality assurance.

Change Contrel, item iii) above, ensures that:
a) changes are individually justified, planned, tested and documented
b) any subsequent versions of the product are clearly identified
¢) any subsequent version can be systematically traced back to the previous version.
d) any previous version can be recovered
¢) any previous results can be reproduced ( if they were properly documented)
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Item d) is a straightforward matter providing the computer system on which the program operates remains
unchanged, however the standard requires consideration of bridging such changes in technology, and
notes that any change in the host system software or hardware constitutes a new configuration that must
be identified as such and linked to its predecessor.

2.7.1 Hardware Platform

The hardware and system software that are used for the development and validation of the computer
program are an integral part of the configuration of a particular version. The porting of the code to a
different hardware system constitutes a change in configuration and is subject to all the rules of change
control and associated V&V.

1t is recommended here that the configuration should be fully identified in the computer program
abstract.

2.1.2 Protection and Accessibility

To ensure that the configuration integrity is protected, the code manager should implement system
software controls on access to the source code and ensure that any modifications be planned and
implemented through the change control system.

It is recommended here that:

a) users be permitted access only to object code of the designated production version.

b) developers be given read only access to the source code of the archived production version
such that any modifications that they are developing and testing would generate a development
version that remains in their own work area and causes no change to the production version.
When modifications are complete they should be forwarded to the code manager for
acceptance and implementation towards the next planned production version.

2.7.3 Code management software

The most effective way to manage code development is through the use of code management sofiware. It
is recommended here that the unit assembles or acquires a suite of code management software and uses
this suite for the management and control of all software under care of the unit, thereby implementing a
uniform approach to code management that is not dependent on the personnel involved with individual
computing projects. These procedures themselves should be documented and controlled.

2.8 Change Control

28.1 Change control Pianning

The motivation for changing a code may arise from two sources:
i) the need to enhance the code
ii) the need to correct a nonconformance or fault.
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The development plans must address the first case and should also include provision to cater for the
inevitable probability that corrections will be needed. The changes should be planned and documented
using a standard change control form, this form could cater for both the above needs.

2.8.2 Change Control Implementation

Change Control Implementation and Testing should also be documented using a standard change control
form.

2.8.3 Feedback

There should be regular interaction between the analysis teams and the code development and
management teams. Any nonconformance experienced by the analysts should be reported and the report
Jformalised through the change control system; any requests for enhancement can be handled by the same
route. Clearly the code development and management teams should disseminate to all users any
nonconformance reports and the plans to solve the problem, and plans for release of the next production
version of the code.

2.8.4 Change Control Forms

The sample change control form given in Appendix E caters for all the above components of change
control by using several sections.

285 Version Tracking

The standards require explicit documentation of the configuration of each version of a code and of each
code change. This is normally done in a document referred to as a development history or version tracking
record. This document should evolve concurrently with the development of each version, and a version of
this document should be released at the same time as the code version is released.

A simple but efficient form of version tracking document consists of a compilation of completed change

control forms.

29 Verification and Validation

As noted above, the required Verification and Validation (V&YV) should be outlined in the original
ing document, and also should be addressed in the change control documents for subsequent
changes.

2.9.1 Verification

Verification is systematic confirmation that the coding itself and the results produced from selected basic
test cases fulfill the specified requirements. This can be done in a deterministic manner that does not
require interpretation, so the specification of verification tests is straightforward, and the result is
normally an unequivocal pass or fail. "
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2.9.2 Validation

Validation is required to provide sufficient information to justify the use of the computer code in a
particular application. Such justification involves quantifying the uncertainties associated with the key
results sought in that application and demonstrating that that magnitude of uncertainty is acceptable.

The validation process involves comparison of results produced by the particular code against whatever
relevant evidence can be found. Such evidence may include data from operating sites, related
experiments, standard benchmark problems or from other computer codes that have been validated for the
results considered in the comparison. Since the amount of reference data available is always limited, has
some associated uncertainty and also may not directly pertain to the application that the validation is
intended to justify, the validation process cannot be expressed in such unequivocal terms as verification
and an extensive validation program consisting of a repertoire of comparisons that examine different
aspects of the results is usually necessary.

The most meaningful approach to validation is to concentrate on the validity and uncertainty of computed
key parameters that are crucial to the conclusions of each analysis planned. To this end, the AECB and
the industry have launched an extensive initiative on validation that identifies these key parameters for
each licensing scenario and focuses on their associated uncertainties. This is a separate initiative and
will not be further addressed in the current document.

2.10 Application of Computer Codes

As the development, management and application of a computer code are each distinct disciplines, it is
useful to regard user groups as the end customers of the code development team and the code
management team.

Given this relationship, the code management team must provide a properly controlled configuration
with all associated documentation for use by the application group.

2.10.1 Analyses

The application group must ensure that all components of the analysis are defined in 2 manner that
permits the results they generate to be reproducible, reasonable, and easily reviewed. To do this they
should document in advance:

- the goal and scope of the analysis,
- the specifications of the physical system to be modelled
- the assumptions involved in generating the simplified model to be used to represent the physical system
- a quantitative assessment of the degree of conservatism inherent in the assumptions
- assembly, referencing and certification of data describing that model
- the choice of computer code to be used
- the choice of a configuration of the code that is fully identified, and documented as a production version
- quantitative evidence that this configuration has been adequately validated for the intended use
- the assembly of input data and verification that it adequately represents the system
- evidence that the code will be used only within it’s documented range of applicability
and in a manner consistent with it’s documentation
- a plan to present results that clearly demonstrate that the goal of the analysis has been attained
- a plan to assess results to confirm that they are appropriate
- a methodology to assess the uncertainty of the key results, including those uncertainties involved in
extrapolating when necessary from the assembled validation data to the application in
question.
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Clearly, any analysis requires a final report that details all the above, and presents results, associated
uncertainties and interprets these in the context of the goal of the analysis. However interpretation of
results is beyond the scope of the CSA SQA standards, and hence need not be addressed in the USQAPD.

2.10.2 Validation Analysis

Any validation analysis is an application and should be planned and documented as in section 2.10.1.

2.10.3 Feedback

Any nonconformance or questionable performance by the code that is encountered by the analysts should
be clearly defined and reported to the code manager.

2.10.4 Computer Program Transfer

If a particular version of a code is physically or electronically transferred from the code manager to a user
group, the user group development must confirm that the version thus obtained passes verification tests
specified by the code manager, prior to using that version for other analyses,

2.10.5 Standard Data Decks

For any suite of analyses to be done for a given physical system, it is recommended that a standard data
deck be prepared and verified, and then maintained under the change control process, so that the initial
reference deck and all subsequent changes are verifiable and retrievable.

2.11 Documentation

The standards require specific documents to accompany each of the activities discussed above, and outline
details of the expected contents of each. To aid the specification of documents in the USQAPD, the
required documentation is summarised in Appendix F.

212 Implementation and Revision of Procedures, SQA Audits

This topic is not addressed in N286.7, but is required in 0397, and AECB-C6. Having established the
procedures under the above topics (2.1 - 2.11), the final section of the USQAPD should address the
Jollowing:

i) implementation schedule

ii) provision of sufficient records to demonstrate in an auditable manner that the procedures

have been implemented and are being followed
iii) schedule for regular review and possible revision of the procedure document
iv) person responsible for i) 1o iii) above.
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213 Bibliography

The term reference in section 2.3 implies reference standards, hence the bibliography should be contain
any other type of report that the USQAPD refers to.

2.14 Appendices

Appendices should be used for appropriate support documentation..
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3. Sample USQAPD (Unit Software Quality Assurance Procedures Document)

This section contains a sample outline for a procedures document for a fictional unit “xxx” in a fictional
organisation “yyy’. The sample has been created by applying the guidelines of section 2, and the
subsections follow those of section 2 precisely. The sample can be made to look like a self-contained
document in which the sections are equivalent to those of N286.7, by merely removing the prefix “3.”
from each subsection of section 3.

Title Page (sample)

Procedures for Software Quality Assurance
in
The xxx unit

yyy Organisation

Report No....... Revision No...... Date.......
Wn.tten by SePODOSIINOOIGS Date (X212 1]
Approved by ............ Date.......

Full organisational Identification

3.1 Purpoese and Scope

The purpose of this procedure document is to record the procedures established and implemented in the
unit to manage all aspects of software quality assurance in the development, management and application
of computer codes for safety analyses.

The document delineates specific procedures for all aspects of computer code work in the xxx unit, and
specifies formats for all documents associated with such work.

3.2 Definitions of Terms used in this Document

Appendix A lists definitions of terms used in this document. It contains all the definitions from
CSA.N286.7-94 plus some additional definitions that are included to clarify the current document.

3.3 Applicable Reference Documents

The Canadian Standard Association series of N286 documents define quality assurance standards for
activities related to a nuclear power plant project.

CAN/CSA N286.0-92 Covers Overalt Quality Assurance
CAN/CSA N286.2-86 Covers Design Quality Assurance
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CSA N286.7-94 Covers Software Quality Assurance

CSA N286.7-94 has been issued as a preliminary standard entitled: Quality Assurance of Analytical,
Scientific and Design Computer Programs for Nuclear Power Plants. The standard addresses computer
programs for analytical, scientific and design applications for safety-related systems and components, and
applies to programs originating in the nuclear industry and programs procured from external vendors.
This standard has been under development for several years, and is likely to be further revised following
considerable interaction with the industry.

A draft revision dated March 1996 has also been consulted in preparing this document, this revision is
referred to as N286.7-96.

The CAN/CSA Q396 series (1989) has four documents that address SQA programs for i) the development
of Software and ii) the use of Previously developed software in a) Critical Applications and b) Non-
Critical Applications. These standards cover many of the topics included in N286.7, but concentrate more
on the SQA aspects of the customer client relationships.

This document refers to CSA N286.7 and the CSA Q396 series collectively as the CSA SQA standards.

3.4 Unit Organisation and Responsibilities

3.4.1 Mandate
The xxx unit reports to the zzz division in the yyy organisation.

Its mandate includes the management of the AAA and BBB computer codes, validation of the codes,
improvements to the codes and interaction with users. Some application of the codes, primarily to
validation is done within the unit, the codes are also applied to safety analyses by other user groups at
various sites.

These computer codes are primarily thermalhydraulic codes but include some reactor physics and fuel
modelling. Further details are given in section 3.5.

The principal customer is the zzz division of the yyy organisation. The AECB could be regarded as an
ultimate customer.

3.4.2 Roles and Responsibilities
This section defines the key roles and responsibilities within the unit.

The Unit Manager
is supervisor of all the unit’s activities, and has the following responsibilities:
- assigns qualified support staff and appropriate resources
reviews/approves all documents
approves SQA procedures, and monitors their implementation and review
minimum qualifications - post graduate degree in science or engineering or equivalent, plus
six years experience in computational analysis in thermalhydraulic systems

[} * ) L]
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Two Project Leaders, the Code Manager and the Senior Applications Analyst, report directly to the Unit
Manager.

The Code Manager

- reports to the unit manager

- is project leader in charge of controlling the computer codes AAA and BBB

- directs and monitors configuration management and change control

- formulates SQA plans for code enhancements

- defines verification/ validation requirements

- supervises and directs the code custodian and one development analyst

- defines, assigns and coordinates tasks

- reviews and accepts tasks on completion

- responsible for all documentation related to the code

- minimum qualifications - post graduate degree in science or engineering or equivalent, plus
four years experience in code development in thermalhydraulic systems

The Code Custodian

- reports to the code manager

- assembles official versions of the computer code

- implements and maintains these versions on the hardware platform

- implements configuration management, change control and verification

- archives code back up versions, and all modifications

- may initiate change requests

- arranges workshops for new staff on code use

- minimum qualifications - technical diploma in computer science or equivalent, plus

two years experience in computational analysis

Development Analysts

- report to the code manager

responsible for completing particular code development tasks

may initiate change requests

minimum qualifications - undergraduate degree in science or engineering or equivalent, plus
WO years experience in computational analysis in thermathydraulic systems
attended one or more code workshops

Senior Application Analyst

- reports to the unit manager

- is project leader in charge of all application of computer codes in the unit

- formulates SQA plan for each analysis project

- defines verification/ validation requirements

- supervises and directs the two application analysts

- defines, assigns and coordinates tasks

- reviews and accepts tasks on completion

- responsible for all documentation related to the application

- reporis code problems to code manager

-m?yiniﬁateclmngereqmts

- minimum qualifications - post graduate degree in science or engineering or equivalent, plus
four years experience in computational analysis in thermalhydraulic systems
attended one or more code workshops
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Application Analysts
- report to the senior analyst
- responsible for completing and verifying code application tasks assigned by the Senior Analyst
- reports analysis problems to project leader
- mininmm qualifications - undergraduate degree in science or engineering or equivalent, phus
two years experience in computational analysis in thermathydranlic systems or
attended one or more code workshops

Independent Reviewer
- a part time responsibility assigned as needed to any of the above personnel
- appointed by and reports to the unit manager, code manager or senior analyst to review particular task(s)
that have been completed by other analysts
~ minimum qualifications - post graduate degree in science or engineering or equivalent, plus
two years experience in computational analysis in thermathydraulic systems

SQA Representative

- a QA specialist assigned by the organisation on an as needed basis

- assists with or reviews the unit’s SQA procedures

- minimum qualifications - post graduate degree in science or engineering or equivalent, plus
two years experience in SQA

3.5 Computer Program Classification and Requirements for Control

3.5.1 Version Identification

Version identification for the computer codes managed in the unit follows the convention Vx,Ry,Mz, i.e.
Version x, Revision y, Modification z.

The numbers x and z change monotically. The modification number, z is incremented each time the code
is changed through the change control procedure, and is in fact identical to the task number of the latest
modification. This modification number uniquely identifies the content of the code. The version number x,
and the Revision number y are used to indicate whether modification level z constitutes a frozen
production version that is approved and released for use, or is still undergoing test and/or development.

Each production version is released identified as Vx,R0O,Mz , i.e. Version x, Revision 0, ( Modification z ).

Continuing development through the change control process requires that the code content at the next
change be identified Version x, Revision 1, Modification z+1.

Each subsequent coding change, no matter how small is done through the change control process and
requires an increment in the modification number , the version and revision numbers are assigned to
change according to target projects in the development plan.

The version identifier, VX,Ry,Mz, appears on each page of code output to uniquely identify the content of
the code that produced that output.
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3.5.2 Classification

Following the intent of CSA N286.7, the following basis for classification is used:

Type 1 : Computer Programs that were developed prior to the implementation of the standard addressed
by the procedures, and that have not been changed.

Type 2: Computer Programs that were developed prior to the implementation of the standard addressed
by the procedures, and that are undergoing any significant change.

Type 3: New Computer programs under Development

The computer programs are also classified according to usage category:

Category Usage Applicable Standard
Category 1 Software used in Critical Applications CSAQ396.1
Category I Software used in Safety Related Applications CSA N286.7
Category Ill Non-Critical Software CSA Q396.2

Given the above, the computer codes managed by the unit are summarised in table 1:

Table 1
Classification and Description of Computer Codes managed by the xxx Unit
Code Classification | Purpose and Use Current | Current
Version | Documentation
& Date
AAA Category H Steady-state V12 Code abstract xxx-92-12
Typel thermathydraulic code used | 92/07 User Manual xxx-92-17
for scoping and reference Theory Manual xxx-92-22
calculations Valid’n Report xxx-93-32
BBB Category I Transient two-fluid system | V5SRO Code Abstract xxx-95-25
Type2 thermalhydraulics code (M122) | User manual xxx-95-27
with coupled fuel thermal | 96/02 Theory Manual xxx-95-33
and physics Developm Plan xxx-95-51

3.5.3 Control of existing (Type 1) Software

Each production version is frozen at issue and hence becomes type 1 software. Each issue is accompanied
by commensurate revision of the following documentation:

Program Abstract, including hardware platform and system software
User Manual

Theory Manual

Validation Report

3.5.4 Control of existing software requiring modifications (Type2)

As noted above, any change to the current production version Vx,R0,Mz requires that the resulting code
must be identified as Vx,Ry,Mz’, where y>0 and z’>z.
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Changes are planned, implemented, tested and accepted through the change control process described in
section 3.8.

Each document contains the Program Name, Version Identifier and release date, and identifies the
differences found in the new production version and the planning rationale behind those differences.

The Program Abstract is reissued in full with each release, however incremental revisions to the theory
manual, user manual and validation report are sufficient when the changes are not extensive.

3.5.5 Control of new software under development (Type 3)

The current mandate of the unit does not include projects involving development of new software.
3.6 Program Design and Development

As the unit has no new software projects, the planning of changes is handled through the change control
process. That process does incorporate in brief the following planning sequence that is required by the
standard for the development of new software:

i) Problem definition
ii) Requirements Specification
iii) Development Plan
v) Theoretical Basis
v) Program design
Coding
vii) Coding Review
viii)  Code output
ix) Verification Tests
X) Validation
xi) Criteria for selection and Release of Production Version.

3.6.1 Coding guidelines

Coding practice follows the list of recommended practices from N286.7, given in Appendix D.

The version identifier, Vx,Ry,Mz, appears on each page of code output to uniquely identify the content of
the code that produced that output.

The codes issue a banner page that reproduces the program abstract.

All input data files are reproduced verbatim in the initial output from the code.
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3.7 Configuration Management and Change Control Process

3.7.1 Configuration identification & hardware platform

The configuration for ¢ach code is fully defined in the program abstract. Any change in the hardware
platform and/or system software will require a new version to be issued.

3.7.2 Protection and Accessibility

To ensure that the configuration integrity is protected, the code manager has implemented system software
controls on access to the source code.

Users are permitted access only to object code of the designated production version.

Developers are given read only access to the source code of the archived production version such that any
modifications that they are developing and testing generates a development version that remains in their
own work arca and causes no change to the production version.

When modifications are complete they are forwarded to the code manager for acceptance and
implementation towards the next planned production version

3.7.3 Configuration management software

The code manager uses the UNIX Revision Control System (RCS) for managing all code revisions.

3.8 Change Control

3.8.1 Change Control Planning

The codes develop in an evolutionary manner primarily driven by interaction with our customers.

The motivation for changing a code may arise from two sources:
i) the need to enhance the code
ii) the need to correct a nonconformance or fauit.

Changes needed to enhance the code are identified in the code development planning document, reference
{1}. The ongoing development is planned to address a series of goals. A new version of the code will be
released on the attainment of each major goal.
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For each goal the document outlines the following:

Overall Technical Requirements to address the goal
Specific Tasks required to meet these requirements
Individual modification sets required to accomplish these task
( a modification set in the change process consists of a group of related code changes that can be
planned, implemented and tested as a unit ).
Verification tests required for acceptance of modification
Verification tests required for acceptance of task as complete
Verification tests required for acceptance of goal as complete in principle
Validation tests required for acceptance of goal as complete in intent

3.8.2 Change Control Process

Once the planning process for the next release version is complete, the individual modifications required
are recorded in a Change Request Form. The actual form used is given in Appendix D
This form combines all information needed to complete the following :

A. Change Request - Defined by Request Originator

- Request originator & Date

- version id. that requires change

- reason for request

- features that need changing

- acceptance criteria for completion of change
B. Implementation Plan - Defined by Code Manager

- reason if request not accepted

- if accepted

- request number assigned

- theoretical/numerical background if applicable

- summary of coding required

- routines affected

- assigned to ...., for completion by ....

- scheduled to be complete for production version Vx (Anticipated date ....)

- benchmark problems to be tested against

- expected effect on resuits

- acceptance criteria

- updates to manuals if required

- coding and results to be checked by ....

- feedback copy of above sent to originator

C. Implementation in Development Version
- modification accepted by code manager
- assigned modification number z
- integrated in development version
- integration tested and accepted
- modification archived
- documents revised if necessary
- feedback report to development team and users
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3.8.3 Version Tracking

Once received by the code manager, this change control form resides in a change request folder until the
completion of all the above.

The completed form is then archived in the Code Development History Document. This document is not

published formally as it expands with each change, but it will be maintained on disc in electronic form for
access by developers and customers.

3.8.4 Feedback

Formal means of feedback is maintained through the change control system.

3.9 Verification and Validation

3.9.1 Verification

The required verification for changes is included in the change control process.

3.9.2 Validation

Since both computer codes under management by the unit are existing codes, a number of validation
documents already exist. These are a good measure of the credibility of the code under certain
circumstances. However further enhancement of the codes is deemed necessary to satisfactorily complete
the validation process for all licensing scenarios. The validation required necessarily increases with the
evolution of the codes and their mandate. Hence a more comprehensive validation plan has recently been
developed, reference {2}. This plan follows the extensive initiative that the industry and the AECB have
recently launched on validation, and identifies the key parameters for each licensing scenario, and focuses
on their associated uncertainties. This initiative is not discussed further in the current document.

This validation plan is currently the driving force in the development plan.

3.10 Application of Computer Cedes

The Senior Analyst is given charge of each set of analyses, writes an analysis plan, and assigns and
supervises tasks. He requires access to the current production version of the relevant computer program,
and is a customer of the code manager and his team.

Given this relationship, the code management team must provide a properly controlled configuration with
all associated documentation for use by the project leader’s application team.

3.10.1 Analyses

The senior analyst must ensure that all components of the analysis are defined in a manner that permits
the results they generate to be reproducible , reasonable, and easily reviewed.
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This is done by documenting in advance:
- the scope, and goal of the analysis,
- task breakdown
- the specifications of the physical system to be modelled
- the assumptions involved in generating the simplified model to be used to represent the physicat system
- assembly, referencing and certification of data describing that model
- the choice of computer code to be used
- the choice of a configuration of the code that is fully identified, and documented as a production version
- evidence that this configuration has been validated for the intended use
- the assembly of input data and verification that it adequately represents the system
- evidence that the code will be used only within it’s documented range of validation
and in a manner consistent with it’s documentation
- a plan to present results that clearly demonstrate that the goal of the analysis has been attained
- a plan to assess results to confirm that they are appropriate
- a methodology to assess the uncertainty of the key results
- review by independent reviewer and subsequent acceptance by project leader
- archive of results and data deck

The applications analyst conducts particular analysis tasks. His work is supervised closely by the Senior
Analyst, and is reviewed by an independent reviewer and the Senior Analyst.

The analysis planning and implementation form given in Appendix E is used as a checklist for the entire
process.

Each analysis requires a final report that details all the above, and presents results, associated
uncertainties and interprets these in the context of the goal of the analysis. However interpretation of
results is beyond the scope of the standards, and hence is not addressed here.

3.10.2 Validation Analysis
Each new validation analysis is an application and is planned and documented as in section 9.1

3.10.3 Feedback

The code manager is responsible for maintaining regular contact with all application teams. Any
nonconformance experienced by the analysts is reported through the change control system, and any
requests for enhancement are handled by the same route. The code manager uses the change control
system to disseminate to all users any nonconformance report and the plans to solve the problem, and
plans for release of the next production version of the code.

3.10.4 Standard Data Decks

A standard data deck is prepared as the first task in any suite of analyses for a given physical system. This
is established as a reference and maintained under the change control process, so that the initial reference
deck and all subsequent changes are verifiable and retrievable.

3.11 Documentation

Specific documents accompany each of the activities discussed above, and details of the expected contents
of each are outlined in the CSA standards. Required documentation is summarised in Appendix F.
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3.12 Implementation and Audits

3.12.1 Implementation

Implementation of the procedures described above was commenced in April 1996, all work now adheres
to these procedures.

3.12.2 SQA Records

The procedures require the use of the forms in Appendix E. All key stages of work are archived, both in
code management and in application. These forms are also filed in hardcopy and contain the path to the

appropriate archived computer files.
3.12.3 Review of these Procedures

The unit manager is responsible for initiating review of these procedures. The procedures will be reviewed
on an annual basis, the next review being April 1997.

3.13 Bibliography

{1} Development Plan for the BBB Computer Program, xxx-95-51.
{2} Validation Plan for the BBB Computer Program, xxx-96-02
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4. Concluding Remarks

This report has provided guidelines for writing a set of SQA procedures that satisfy the N286.7 standard,
and has used those guidelines to present a sample SQA procedures document for a fictional organisational
unit. A number of sample SQA forms have been included to show that the requirements of the standards
can be met by relatively concise records.

5. Bibliography

1. Requirements for the Safety Analysis of CANDU Nuclear Power Plants, AECB Consultative Document
C-6,R1,1994.

2. Guidelines for the Development and Use of computer Programs, APEO, 1987.
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Appendix A
Relationship of Procedures Decument
to CSA Standards
CSAN286.7-94 CSAN286.7-96 CSAQ3%.1.1& 2
CSAQ3%.2.1 & 2
Title Page not mentioned
1 Purpose and Scope 1 Scope
2 Defimitions 2 Definitions
3 Reference Documents 3 Reflerences
4 Usit and 4 Respousibiifies
§S Computer Program Classification and | mo specific section S Requirements (covered by 396.1.1 or.1.2
Requirements for Control for Computer or 3%2.1 or22)
Programs
6 Computer Program Design and S Computer program 6 Computer program 5.6 Quality Project Plan
Development Design & development | Design & development
7 Configurstion Management 6 Configurstion 7 Configuration 6.3 Configurstion
Mansgement Management Management & Control
8 Hardware
Integration
8 Change Control 7 Change Control 3 Change Control 6.3
9 Verification and Validation 5.5.2 Verification 6.7 Verification 5.6.6 Verification
5.6 Validation 9 Valldation 5.6.7 Validation
10 Application of Computer Codes 10 Execution of 10 Use of Computer not specific
Computer Programs Programs
11 Documentation 10 Documentation 11 Documentation £.6 Quality Project Plan
12 Implementation, Revision & Andits not specific 5.4 SQA Review and Andit
13 Bibliography _mot specific
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APPENDIX B - DEFINITIONS
All the definitions in CSA.N286.7-94 are reproduced here in standand font, some additional definitions from
CSA.N286.7-96(draft) and CSA.Q396 have been added where they are considered useful for the current
document and are marked appropriately. Some additions have been introduced solely for the purpose of the
current document ; these appear in italic font.

Acceptance testing - formal testing conducted to determine whether or not a system satisfies the acceptance
mwamwumammmmwmmmmawmw

the system.

Algorithm - a finite series of well defined rules

(a) for the solution of a problem in a finite number of steps.

(b) that gives a sequence of operations for performing a specific task.
Archiving - a formal process for storage of files in a manner that ensures compiete retrieval..
Assemble- to translate a program expressed in an assembly language into a machine language.

Assembly language - a machine-specific language containing instructions that arc usually in one-to-one

Base Version - the first version of a computer program that is put under configuration control .
execution of instructions, including the necessary arithmetic, logic, and control circuits to execute the
. .

Change control - the process by which a change is proposed, evaluated, approved or rejected, scheduled, and

Coding - translating a computer program design into a programming language.
Caﬂtqhm’a!-adefbaedpny‘eamqndﬂngcoding
Coding Task - a defined subordinate part of a computer project

Comment Statement - a statement that is embedded in a computer program in order to provide clarification to
human readers and that does not affect machine interpretation.

Compiler - a program to translate a high level language program into its machine code equivalent.

Computer Code or Computer program - a sequence of instructions suitable for processing by a computer and
designed to achieve a certain result.

Computer program abstract - a brief description of a computer program, providing sufficient information for
potential users to determine the appropriateness of the computer program to their needs and resources.

Computer program routine - a computer program segment that performs a specific task.

Computer system - a system composed of computer(s), peripheral equipment such as disks, printers and
terminals, and the computer programs necessary to make them operate together.
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Configuration - the precise combination of software components that are linked to operate as a specific product
as set forth in the accompanying documentation (CSA.Q396).

Configuration component - a collection of computer program elements treated as a unit for the purpose of
configuration management.

Configuration management - the process of identifying configuration components, controlling changes, and
maintaining the integrity and traceability of the arrangement of the computer program components.

Construct - a complex image or idea formed from a number of simpler images or ideas.

Control structure - a construct that determines the flow of control through a computer program.

Cerrectness - the extent to which a computer program is free from design and coding defects.

Critical Application - the use of software in which the occurrence of failure may have an effect on health and/or
safety, or may cause significant financial or social loss,

Non-critical application - the use of software in which the occurrence of failure is unlikely to cause
any of the above effects.

Data structure - a representation of logical relationships among individual data clements.
Debugging - the process of locating, analysing, and correcting suspected faults.
Design phase - the period of time in the computer program life cycle during which the designs for architecture,

compuier program components, interfaces, and data are created, documented, and verified to satisfy
requirements.

Developer - the party that creates a computer program or a component thereof and its associated documents for
its own use or that of others.

Development phase - the period of time that begins with the decision to develop a computer program and ends
when the computer program is delivered.

Document - a data medium and the data recorded on it, that generally has permanence and that can be read by a
person or machine.

Decumentation - a collection of documents on a given subject.
Embedded computer program - a computer program for an embedded computer system.

Embedded computer system - a computer system that is integral to a large system whose primary purpose is
not computational.

Empirical correlation - a2 mathematical representation of an assumed interdependence between two or more
variables based on actual measurement, observation or experience, rather than theory.

Ervor - a discrepancy between a computed, observed, or measured value or condition and the true, specified, or

Executable code - a computer program in a language that can be directly executed by a computer.
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Fault - 2 manifestation of an error in a computer program.
File - a set of related computer records treated as a unit.

Flowchart - a graphical representation of the definition, analysis, or solution of a problem in which symbols are
used to represent operations, data, flow, and equipment.

Hardware - physical equipment used in data processing, as opposed to computer programs, procedures, rules.
and associated documents.

Hierarchy - a structure whose components are ranked into levels of subordination according to a specific set of
rules.

High level language - a programming language that usually includes features such as nested expressions, user
defined data types, and parameter passing not normally found in lower level languages, that does not reflect the
structure of any one given computer or class of computers and that can be used to write machine independent
SOUICE Programs.

Instruction - an element of a computer program containing a meaningful expression that causes a computer to
perform a particular operation

Integration - the process of combining computer program clements, hardware elements, or both into an overall
system.

Integration testing - an orderly progression of testing in which computer program elements, hardware elements,
abuhmoummmmunnlmeamresymlmhmumgxm

Interface - a shared boundary between computer system components.

Interpret - to translate and to execute each source language statement of a computer program before translating
and executing the next statement.

Job control language - a language that expresses the statements of a job and that is used to identify the job or
describe its requirements, usually to an operating system.

Latent defect - a fault which exists but is as yet concealed.

Life cycle - the period of time that starts when a computer program is conceived and ends when the program is

no longer available for use and analyses performed with it no longer support any nuclear power plant operating
licenses.

Mathematical Library - a collection of computer program modules that perform standard mathematical
operations (CSA.N286.7 - 96 (draft))

m-asdm:bdevemmmisusedmmmmpmgms.
Model - a representation of a device, concept or a physical process.

Modification-  i)any change to sofiware
ii) a set of related changes to sofiware made to complete a particular coding task
Module - a computer program unit that is discrete and identifiable with respect to compiling,
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Module header - a set of comments forming part of the source code of a module identifying it, and defining its
purpose and use

Nest - to incorporate a structure or structures of some kind into a structure of the same kind.

Nonconformance - a deficiency in characteristic, documentation, or procedure that renders the
quality of a computer program unacceptable or indeterminate, or not according to specified requirements.

Object module - 2 module containing a fully compiled or assembled program that is ready to be loaded into a
computer.

Operand - an entity on which an operation is performed.

Operating system - computer programs that control the execution of computer programs, provide hardware

Organization - the owner of or participant in a nuclear power plant project.
Owner - the party who has or will have title to a nuclear power plant.
Parameter - a variable that is used to pass values between program routines.

Participant - an organization required by the owner to meet one or more of the second tier standards in the
N286 series.

Platform - the computer system ( hardware and software ) on which a computer program has been implemented
and tested.

Portability - the ease with which a computer program can be transferred from one computer system or
environment to another.

Process - in a computer system, a unique, finite course of events defined by its purpose or by its effect, achieved

Program Component - a basic part of a computer program.
Programming langnage - an artificial language designed to generate or express computer programs.

Program loop - a sct of instructions in a computer program that may be executed repeatedly while a certain
it i

Programming segment - the sequence of computer program statements between two consecutive branch points.
Program statement - see source statement.
Program structure - a representation of the logical relationship among individual program componens.

Qualification - the process of determining whether a system or component of a system is acceptable for use
(IEEE Std 610.12-1990)

Quality assurance - a planned and systematic pattern of actions designed to provide adequate confidence that a
computer program will be of the required quality.
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Qudlified persom - a person who possess an appropriate level of expertise and experience to perform the
assigned task.

Record - information stored in a document or other media that furnishes evidence of the quality
» ..

Safety-related systems - those systems, and the components and structures thereof, which, by virtue of failure to
pesform in accordance with the design intent, have the potential to impact on the radiological safety of the public
or plant personnel from the operation of the muclear power plant. Those systems, and the components and
structures thereof, are associated with

(a) the regulation (including controlled startup and shutdown) and cooling of the reactor core under normal
conditions (including all normal operating and shutdown conditions);

(b) the regulation, shutdown, and cooling of the reactor core under anticipated transient conditions, accident
conditions, and the maintenance of the reactor core in a safe shutdown state for an extended period following
such conditions; and

(¢) limiting the release of radioactive material and the exposure of plant personnel and/or the public to meet the
criteria established by the licensing authority with respect to radiation exposure during and following normal,
Notes:

(1) The term "safety-related system” covers a broad range of systems, from those having very important safety
functions to those with a less direct effect on safety. The larger the potential radiological safety effect due to
system failure, the stronger the "safety-related” connotation.

(2) The term "safety-related” also applics to certain activities associated with the design, mamufacture,
construction, commissioning, and operation of safety-related systems, and to other activities which could
similarly affect the radiological safety of the public or plant personnel, such as environmental and effluent
monitoring, radiation protection and dosimetry, and radioactive material handling (including waste
management). The larger the potential radiological safety effect associated with the performance of the activity,
the stronger the "safety-related” connotation.

(3) Certain failures of other systems could adversely affect a safety-related system (e.g. through flooding or by
mechanical damage). The potential for this and the necessary means to control it must be addressed in
appropriate phascs.

Software - a program or set of programs and associated data, procedures, rules. documentation and materials
concerned with the use, operation and maintenance of a computer system or an automated information system.
CSA.Q3%

Software Component - a functionally and logically distinct part of a software program CSA.Q396

Software Product - the complete set of computer programs, procedures, associated documentation and data
designated for delivery to the user (IEEE Std 610.12-1990)

Software Quality Assurance (SQA) - a planned and systematic pattern of all actions necessary to provide
adequate confidence that software components conform to established requirements and specifications.
CSA.Q3%

SQA Audit - a formal, planned and documented activity that will objectively evaluate and verify that the
applicable elements of an SQA program have been established, documented and implemented in accordance
with the applicable standard. CSA.Q396

SQA Procedure - a document prepared by a functional unit within an organisation that specifies and assigns
all activities that are required to establish an acceptable SQA program to govern the software activities of that
unit.
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Source Code - a computer program that must be compiled, assembled, or interpreted before being executed by a
computer.

Source langnage - a language used to write programs that mmst be compiled, assembled, or interpreted before
being executed by a compaster.

Source program - a COmMputer program written in source language.
Source statement - an instruction in a source program
Sabprogram - a computer program unit that may be invoked by one or more other computer program umnits.

System - a collection of hardware, computer programs, people, facilitics and procedures organised to achieve a

System Library - a controlled collection of programs, resident on the computer system, that can be accessed for
use or incorporated into other programs by reference.

Testing - the process of exercising or evaluating a system or system component by manual or automated means
to verify that it satisfies specified requirements.

Unit - ( in this document ) a subgroup ( or team ) within an organisation.

User - a party which uses a computer program to perform analytical, scientific and/or design computations
related to nuclear power plant systems, equipment and components.

Validation - comparison of the results of the computer program with measurements, experiments or known
solutions, so that the accuracy or uncertainty for a particular application can be determined.

Variable -

(a) a quantity that can assume any of a given set of values;

(b) a character or a group of characters that refers t0 a value and, in execution of a computer
program, corresponds to a specific memory location.

Verification - the process of determining whether or not the products of a given phase of the computer program

through are some of the means of accomplishing verification.

Note: This definition of the term "Verification” applies to activities related to the computer program
development cycle and differs from the definition given in CSA CAN3-N286.2 which applies to
design activities.

Version - A term used to identify a sofiware product having a uniquely defined composition

Walk-through - a review process in which a designer or programmer leads one or more other members of the

development team through a segment of design or computer program that she/he has written, while the other

members ask questions and make comments about technique, style, possible errors, violation of development
standards, and other problems.
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Typical Roles & Responsibilities

Unit Manager

- senior supervisor of the unit

assigns qualified support staff and appropriate resources
reviews/approves all documents
approves and implements SQA procedures
implements training programs for new staff

Project Leader

- in charge of particular software project(s)
- defines and coordinates tasks

- formulates SQA plan for project

- reviews and accepts tasks on completion
- responsible for all project documentation

L L ] [} 1] [}

Code Manager

- project leader in charge of controlling a particular computer code

- directs and monitors configuration management and change control
- defines verification/ validation requirements

- responsible for all documentation related to the code

- directs code custodian and development analysts

Code Custodian

- assembies official versions of the computer code

- implements and maintains these versions on the hardware platform

- implements configuration management, change control and verification
- reports problems to code manager

- may initiate change requests

Development Analyst

- responsible for completing particular code development task(s)
- reports problems to code manager

- may initiate change requests

Application Analyst

responsible for completing particular code application task(s)
reports code problems to code manager

reports analysis problems to project leader

may initiate change requests

Independent Reviewer
- may hold one of the above positions

MBC.AECB.01
96/10

- appointed by manager, code manager or project leader to review particular task(s) that have been

completed by other analysts
SQA Representative

- a QA specialist assigned by the organisation to assist with or review the unit’s SQA procedures
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Appendix D
Recommended Checklist to Confirm Programming Practice (from CSA N286.7-94)

Note: This appendix is not a mandatory part of the Standard

Documents defining standard and uniform programming practices, such as programmers' handbooks,
should address the following issues:
(a) Program Organization
(i) Overall program structure, including
(1) input data acquisition and processing;
(2) checks and edits;
(3) computation and data processing; and
(4) final edits and saving of specific data.
(ii) orderly progression of calculational flow;
(iii) overall program control in a single module;
(iv) a single well defined function for each module;
(v) a uniform module layout, including
(1) module header;
(2) data definition; and

(u)adherencetoanapphmbleprogmmmmgstandmd,
(iii) limited use and thorough documentation of extensions to the standard programming language;
(iv) use of assembly language only where absolutely necessary and thorough documentation of the
programming logic.
(c) Data Management
(i) documentation of data transfer techniques:
(ii) use of one data transfer technique throughout the computer program unless a data structure requires
special handling;
(iii) use of one module to read or write a data file,
(iv) documentation of data file content and structure.
(d) Computer Program Features
(i) input data identification, preparation, organization;
(ii) initialization of arrays, variables, default parameters;
(iii) reproduction of input data for visual inspection;
(iv) input and output error checking, including array bounds;
(v) testing of intermediate results;
(vi) reports about calculational path, intermediate results, and calculation progress;
(vii) adequacy of error-checking and associated warning and error messages;
(viii) normal and abnormal computer program terminations;
(ix) output information formats and users' options.
(¢) Source Statements and Variables
(i) specification statements for variables;
(ii) meaningful variable names;
(iii) use of comment statements,
(iv) reflection of program structure and techniques in comment statements;
(v) unique identification of comment and source statements;
(vi) single purpose use of variables;
(vii) checking of parameter types;
(viii) arrays of fixed length.
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Appendix D
Recommended Checklist to Confirm Programming Practice (from CSA N286.7-94)
( Continued )

(f) hardware considerations
(i) independence from unique hardware or computer program features;
(i) documentation of computer memory management during computer program execution;
(iii) impact of computer memory management on computer program portability.
(8) Good Programming Techniques
(i) selection of variable names to reflect scientific notation conventions and to take advantage of default
variable types;
(ii) clear identification of range, beginning and end of program loops;
(iii) meaningful description of printed output;
(iv) programming to achieve definite branching decisions in the computer program;
(v) standards on the use of subscripted variables as subscripts;
(vi) avoidance of mixed mode operations;
(vii) standards for structuring arithmetic and logical expressions for clarity;
(viii) standards for tests to detect invalid or indefinite intermediate results;
(ix) standards on the use of nested constructs;
(x) independence of module interfaces from changes to individual functions;
(xi) recommendations on maximum module size;
(xii) limitation of module parameters to the minimum number required;
(xiii) standards for module entry and exit points;
(xiv) standards on computer program readability;
(xv) standards on efficient and reliable programming techniques.
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Appendix E
Suggested Formats for SQA Forms

The following pages contain samples of the following Forms

1 Computer Code Classification

2 Computer Code Abstract

3 Change Request, Implementation and Control
4 Code Version Release

5 Analysis Definition, Implementation and Review

The layout of the forms is not important, however whatever layout is chosen should cover similar content
to that shown.
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Appendix E
Sample Formats for SQA Forms
Sample Form 1. Classification and Catalogue of Computer Codes
Classification and Description of Computer Codes managed by the xxx Unit
Code Classification | Purpose and Use Current | Current
by Category & Version | Documentation
Type & Date
Sample Form 2. Computer Code Abstract
Document U-yy:nn
Computer Code Abstract for the ... Program
Code Name Version ID Release Date Code Owner
Description of
Problem Solved
Solution
Methodology
Hardware
Platform(s)
System Software
Requirements
Restrictions on use
Authorised Users
Code Manager &
Contact Instructions
User Theory
Manual Manual
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Appendix E: Sample Formats for SQA Forms
Sample Form 3. Change Request and Control Form (Page 1 of 2)

A: Change request - defined by Originator

'Type of Request
Program Originator Address Date Correct Provide
Nonconformance Enhancement

Describe Change Requested or Problem Encountered

Routines Affected if Known

Criteria Recommended for Acceptance of Change

Path to Data Deck Used

L Gf applicable)

Other Comments

Number of Additional Sheets attached

B: Change Implementation & Verification Plan - Defined by Code Manager
If Request not Accepted State Reason

Request No 7 Date Assigned To Complete Target Version Issue Date
received By

Routines Affected

Theoretical and/or
Numerical Basis

Coding Instructions

Benchmark Verification
Cases

Expected Effects
Acceptance Criteria

Updates to Manmals

Work Assigned to | Date Review Assigned to Date ICopyoo Date
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Appendix E: Sample Formats for SQA Forms
Change Request and Control Form (Page 2 of 2)
C: Implementation in Development Version - Defined by Code Manager
Coding and results Comments Date
reviewed b
Modification Accepted Date Modification
by code manager #
Integrated in Comments Date
Development Version
Verified & Accepted Comments Date
I Path to Modification
Archive
Documents Abstract User Theory
Revised, date Manual Manual
Dates reported as Developers: Originator: Users:
Complete
Sample Form 4. Notice of Release of New Production Version
Code Name New Version ID | Effective Date | Previous Version ID § Withdrawal Date
| Main Reason for Replacing Previous
Version

List of Modifications to Previous Version (expand as required)

Mod ID

Date

Purpose & Effect

Applicable Documentation, Revision Number and Date

Abstract

User Manual

Theory Manual
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Appendix E - Sample Formats for SQA Forms
Sample Form §. Analysis Task Definition, Execution and Review

Part A - Planning to be completed by Project Leader

Analysis Goal Project Leader | Analysis Task | Goal Assigned to
Project ID ID

General statement of Project

General statement of Task

Task Details

System to be Modelled

Key Results sought

Key Assumptions in modelling

Source of specifications for Geometry

Source of specifications for Operating Conditions

Computer Code to be used Version ID

Code Documentation User Manual | Theory Manual

Relevant Validation reports

Source of Standard Data Deck for this system

Data Modifications required

Special instructions

| Target Completion dates Data Deck First Results

Final Analysis Draft Report

Final Report

[ Reviewer Assigned
Part B - Review and Acceptance - to be completed as noted

Project ID Task ID Analyst Reviewer

Initials & Date | Completed Reviewed Revised Accepted Accepted
by analyst by reviewer | by analyst by reviewer | by proj. Idr.

Data Deck

First Results N/A

Final Analysis

Uncert. Anal.

Draft Report NA

Final Report

Archive of Path Date
results & data
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Documentation Required by the Standards
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Category

Category I
Safety Critical

Category I

Safety Related

Category Il
Noncritical

Type

Type 1
Exists

Type 3
New

Type 1
Exists

Type 2
Modify

Type 3
New

Typel
Exists

Type 3

Standard

Q396.1.2

Q3%.1.1

N286.7

Q3%6.2.1

Documentation Required

Planning, Design & Development

Project Quality Plan

X

Progrmsa Requirements Specification

Countract Requirements Specification

Design & Development Plan

L]

Program Design Description

L)

Documentation Control Plan

Verification Plan

] (4] e

Validation Plan

Test Plan

Ed Lol tad o

b (el tad Eod B Lo Lo B Lo

Verification Report

Validation Report

Test Procedures

Test Report

L BB R BRI N ]

Configuration Mgt. Plan

Change Control Plan

E b

b A b

Programming Manual

Maintenance and Control

Config. Mgt. Procedures

Change Control Procedures

|t

2 >

Version History Record

Ed b e

Release Control

>

b

Maintenance Manual

LI IR L LA LT IR L P PR et P LT P L T E T ] I

| SQA Review

SQA manual

SQA procedures

SQA records

E b

o

SQA audit

T

bl bl bl o

o fad

E bt b

User Documentation

Computer Program Abstract

User’s Manual

Theory Manual

e b B

L bd b

Ed tal b

Notes:

The standards require documentation of the topics marked X , but permit topics to be combined in a

smaller number of reports as appropriate.

The topics marked x for type 2 programs are required to be documented for new developments only.







