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Abstract 

This paper introduces a new method of detecting 
and handling discontinuities in arbitrary 
functions which form part of an ordinary 
differential equation set. The method has been 
implemented in conjunction with the Gear [6] inte- 
gration algorithm for stiff equation sets, 
published by Hindmarsh[9], but the philosophy 
applies to any predictor corrector integration 
algorithm with Nordsieck[lO]step size control. 

1. INTRODUCTION 

1.1 Discontinuities 

Many dynamic systems may be simulated by ordinary 
differential equations written as a first order 
set: 

dy. 
1 

z = fi(t,YI,Y*‘...*Yn ) i=l,n (1) 

Yi(0) - YOi 

Such a set is most efficiently integrated on a 
digital computer using an error controlled 
variable step algorithm such as Runge-Kutta- 

Merson, Bulirsch-Steer, Adams, Gear, etc. 

In applied simulations, however, the system of 
equations frequently contains discontinuities in 
the form of switches, which are thrown when cer- 

tain conditions are fulfilled. 

Equation set (1) then becomes 

dyi 
- = fij(t.y1,Y2....,Yn) i=l,n 
dt j=l,m 

(2) 

where the m states of the equation system are 
determined by a set of arbitrary algebraic dis- 
continuity functions dk(t,y1,y2,...,y ), a 
switch or change of state occurring a fa 

critical point defined by one of the d, passing 
through zero. 

As the step size chosen by the integration 

algorithm is controlled by the current estimate 
of truncation error, a well-written algorithm 

will detect the discontinuity and adjust its 
step size sufficiently to overcome the discon- 
tinuity. However, in all cases, unless special 

measures are taken to detect the discontinuity 

in advance, before it affects the smooth operation 
of the integration, the discontinuity will cause 
a loss of time and accuracy arising in three 

possible ways. 

(1) The algorithm will hunt around the discon- 
tinuity, using a large number of unsuccess- 
ful function evaluations before a step size 
is found which crosses the discontinuity 
with acceptable error. 

(2) The actual time at which the discontinuity 

occurs is critical for accuracy, but will 
probably not be used as an integration point 
because of the above hunting. 

(3) A very short-lived state switching on and 
then off, in an otherwise well-behaved 
system can be missed out entirely, if the 
current step includes its entire life span. 

Routines for the detection and handling of dis- 
continuities have been built into Runge-Kutta 
algorithms with Merson step control by O'Regan[ll), 
and Kay, et al.[7,5]. These involve an interpo- 
lation of the discontinuity function within the 
integration step which spans the discontinuity, 
but the fact that the interpolation formula is not 
related to the integration algorithm, can cause 
problems in accuracy. Cellierl41 has tackled the 
discontinuity problem in a combined discrete event/ 
continuous process simulator. Here events analo- 
gous to discontinuities are triggered by critical 
relationships between state variables. Cellier 
presents an interpolative iteration scheme to 
determine event occurrence times during integra- 
tion by fifth- and eight-order Runge-Kutta 
algorithms. 

Halin[8], using Lie series methods, expands the 
functions f. as power series for integration, and 
points out that the discontinuity functions can 
also be expanded, thus discontinuities can be 
located much more accurately by using exactly the 
same method that the integration algorithm employs. 
He also points out that this cannot be done with 
classical multi-step methods, such as Adams or 
Hammings predictor correctors because of the 
difficulty in changing step size and the necessity 
of restarting. 

However, the Nordsieck step control algorithm used 
in the Gear algorithm has largely overcome these 
problems. Here functions g of scaled derivatives 
are stored up to the current order q such that 
the prediction of y at time t+h is given simply by 

190 



M.B. Carver / Efficient integration over discontinuities 191 

q 
't+h 

=yt+ I: Pi(Y ) (3) 
i=l 

and at other step size h 
1 by 

q 
Yt+h 

=yt+ 1 !Q(Y ('))(hl/hji (4) 
1 i=l 

It is shown in this paper that if the disconti- 

nuity functions, instead of being treated alge- 
braically, are regarded merely as additional 
differential equations, equation 4 provides a 
natural and accurate prediction of discontinui- 

ties, which can be used to control the integration 
algorithm and ensure that an integration point 
is taken at the discontinuity without hunting. 

The method is outlined and example of discontinu- 
ous systems investigated. Results are shown 
using Rung+Kutta, standard Hindmarsh-Gear, and 
Hindmarsh-Gear with discontinuity detection by 
the new method. The new method can give over 
90% reduction in the number of function evalua- 
tions in the neighbourhood of a discontinuity. 
In large systems of equations such as those 
described in Baudouin and Carver[l], the time 
saving is impressive as the introduction of 
additional equations for the small number of 
discontinuity functions causes negligible penalty 
in matrix manipulations. 

2. THE DISCONTINUITY FUNCTIONS 

Generally in the representation of a physical 
system by a simulation model, the discontinuities 
occur when certain variables pass through known 
critical points, for example a safety valve can 
activate when pressure reaches a given level, 
thus changing the system. The condition at 
which this occurs are readily defined, but the 
exact time at which this happens depends on the 
evolution of the equations being integrated, and 
is not known in advance. 

Thus equations (2) must be governed by a state- 
ment such as 

IF n(y,) 5 B(y2) j=l, ELSE j=2 

where cy and B are arbitrary functions. Obviously 
the discontinuity function here is 

b(t,Y) = n(y,) - B(Y2) (5) 

This can be turned into an additional differential 
equation. 

d$ dyn+l _= 
dt dt - = e'(y1) - B'(Y2)' 

'n+l,O = a(y1()) - b(Y2D) 

(6) 

For a number of discontinuity functions, the 
logic of defining the functions Gk and choosing 
the state j can be quite involved, depending on 
whether the functions affect the equations in an 
independent or interdependent manner. (Example 

3 shows a system governed by interdependent 
discontinuity functions.) However, this definition 

of the $ 
k' 

and choice of state j, must be done 
whatever method is used, the only difference 
being that the new method uses equations 6 to 
define I$, rather than equation 5, and this 
permits the integration to proceed efficiently. 

This, of course, increases the size of the 
equation set, but if n>>m as is usually so in 

simulation applications, the penalty is small. 

Furthermore, discontinuity functions $1,$2,...$k 

can often be combined into one function 
d:='$ ,$ 

1 ?. 
,...$, having k zeros, but increasing 

the equa ion set by only one. Finally, if one 
is evaluating the system Jacobian to accelerate 
predictor corrector convergence, the new method 
prevents the wasted effort of unnecessarily 
evaluating several Jacobians in the neighbourhood 
of the discontinuity, and this can greatly 
reduce the number of necessary function evalua- 
tions, especially for large sets of equations. 

3. DETECTION OF THE CRITICAL POINTS 

The point at which any 4 passes through zero is 
determined by applying equations 4 in the neigh- 
borhood of Q,, i.e. to find hl for which 

4 t+h 
1 

= "t + ; gi(y(i))(hl/h)i = 0 (7) 
i=l 

if 4 is predicted to pass through zero during 
the current step size h. For most cases, a test 
for negative sign in the product 

s1 = 4t *@ t+h 

will be 
cover a 
through 
product 

a sufficient prediction criterion. To 
short-lived switch in which 6 passes 
zero in both directions within h, the 

s2 = '+; * $’ t+h (9) 

must also be examined. 6 and @' are pre- 
dicted values obtained fri;f;hequati&$ similar to 

(7). Thus the following strategy applies: 

Critical 
points 

Condition Sl S2 within h -- 

(a) >o >o 0 

(b) '0 <o 2 

Cc) <o '0 1 

Action (a) 

Continue integration, 
Reduce h and repeat 
to attain condition 
a or c. 

Solve 7 for hl. 
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4. CONTROL OF THE INTEGRATION 
ALGORITHM NEAR A DISCONTINUITY 

Once h has been determined, the integration 
algori hm is directed to integrate to time t+h .$ . 
and then restart at this time. Hindmarsh provides 

facilities for doing these latter two operations 
in reference (9). 

It is necessary to check the values sl and s2 
for every 4 following completion of each integra- 
tion step. This can be programmed into the 

integration algorithm, but it is preferable to 
merely modify the algorithm to return control to 
the user at this point, allowing him to call a 
separately provided detection routine which 
performs the functions described above. This 

requires a four statement modification to the 
integration algorithm. 

5. IMPLEMENTATION 

The method as outlined above has been implemented 
in the FORSIM partial differential equation 

package[ 31, which uses the sparse matrix version 

of the Hindmarsh-Gear algorithm, GEARZ, as 
describedrll. This algorithm stores the N (i) 

variables Y and the scaled derivatives gi(y ) 

up to the current order q, as required by equa- 

(a) Integration Algorithm 

6) USER: Routine to Define Equations(Z) 

tion 3, in an array Y(N,13), q < 12. The discon- 
tinuity detection routine DISCO-is passed this 
array and an array of the indices ND , ND < N, 
of the discontinuity functions y ~ = tk., +hz 
return to the user routine is ma e conditional 
on a flag DISC1 which can be set true always, or 
for better efficiency, only for the neighbourhood 

in which a discontinuity is expected to occur. 
The logic coupling is shown in Figure 1, the 
FORTRAN code and documentation are availablei31, 
but not included here, as interaction naturally 
depends on the particular version of integration 
algorithm being used. 

DISCO may handle more than one discontinuity 
function. Should two critical points be scanned 
by a proposed time step, each will be detected 
and handled in turn. 

Several options are available in GEAR2 for the 
evaluation and use of the Jacobian matrix. In 
the examples following, the functional iteration 
method is used to avoid introducing any confusion 
concerning function evaluations needed for inte- 
gration, and those needed for Jacobian assessment. 
This and the Adams' predictor-corrector formulae 
option were used for all numbers quoted, but all 
other options were tested, and the new method 
found superior in each case, saving a large 
number of unnecessary Jacobian evaluations. 

(b) DISCO: Discontinuity Detection and Handling 

Routine 

Fig. 1: Logic Structure for Discontinuity Detection 
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6. EXAMPLES 

6.1 Single ODE, Single, 

Two states 

Consider the differential equation 

$=Fj(y) Fj =y2, $(t) ’ 0 (10) 

F. =O, 
3 

@(t) 2 0 

Y(O) = Yg 

0 < t < t - -1 

where the discontinuity function is given by 

$ = sin(ZTft). If (10) is integrated for an 

integral number n cycles of e, the result can 
be obtained from the solution of the related 
equation 

dz -_=s 
dt 2, O_ <t<t - 2't2 

= 0.5 t, (11) 

of the new method as opposed to the hunting of 

the standard method. For severe d&continuities, 
this hunting becomes extreme and can lead to 
failure due to numerical overflow. 

which is 

Fig. 2: Algorithm Behaviour at a Discontinuity 

(12) 

Table 1 shows the performance of the new method 6.2 Single ODE, Two Discontinuity Functions, 

for three different interruption frequencies f, Three States 

grving the solution y(t ) = z(t ) = 2.00. These 
and the following resul s were t 2 one with a 

req_yested local truncation error tolerance of 

10 . 

The equation 

2 = -A y + sin(wt) 
j 

where A = (1.0,0.5,0.2), w=l, y(n/4)=0, and 

;I; IYI CD.5 
Y >0.5 

j=3 y c--o.5 _ 

can be described by two discontinuity functions 

Table 1: Algorithm Performance for Example 1 

Number of Discontinuity o 
Function Cycles 

2 4 - _ - 

Number of Function Evaluations 

Runge-Kutta-Romberg 1,491 4,780 11,231 

Standard Hindmarsh-Gear 150 359 421* 

Standard Hindmarsh-Gear 
(Step Size Limited) 

150 400 586 

Modified Hindmarsh-Gear 150 293 485 

*Indicates grossly inaccurate results due to the 
failure to detect one or more discontinuities. 

The Runge-Kutta algorithm, a fourth-order routine 
with Romberg step control is obviously unsuited 
for this type of application. The standard 
Hindmarsh-Gear routine appears to perform quite 
well, but unless a step size limit is imposed, 
h < 0.1/f, the discontinuities can be missed 
altogether. 

This problem imposes a mild discontinuity, so 
the savings realized by the new method are 

modest. However, as shown in Figure 2, the 
results clearly illustrate the stable behaviour 

$J1 = y-.5, I$* = -y-.5 

Results for integrating IT/~ < t < 12.5, which 
spans seven state changes, are shown in Table 2. 
Note that although the equation set to be integrated 
has been increased in size from one to three, 
the time required is still reduced. 

Table 2: Algorithm Performance for Example 2 

Standard Modified 
Runge Hindmarsh Hindmarsh 
Kutta Gear Gear 

Function 

Evaluations 11,630 654 387 

CP Time .438 .212 .203 

CP Time is that using Control Data FORTRAN 4.6 
on NOS/BE Operating System, Cyber 175 Computer 
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6.3 Two ODE's, Four Discontinuity Conditions, 
Three States 

Consider the rectifier circuit in Figure 3. It 
contains 2 diodes D, 2 AC sources U, 3 resistors 
R and 3 inductors L. 

Figure 3: Circuit Example 

Direct current and voltage are given by: 

i3 = il + i2 (14) 

v3 
= R3(il+i2) + L3(ii + is) (15) 

depend on whether Dl, D or both are 
Thus we have: 2 

State 1: Dl Only Conductive when 

(il > 0 or v 
1 

> v3) and (i 
2 

= 0 and v2 2 v3) 

ii = (V, - ilal)/a2 (16) 

i; = i2 = O 

State 2: D2 Only Conductive when 

(i 2 
>Oorv 

2 
> v3) and (i 

1 
= 0 and v1 2. v3) 

ii = (v2 - i2a3)/a4 (17) 

i'zi ~0 
11 

State 3: Dl and D2 Conductive when 

(il >Oorv 1 
> v3) and (i 

2 
>Oorv 

2 ' v3) 

i' 
1 = a5V1 

+ a6v2 + a7il + a8i2 (18) 

i' 
2 = a9Vl 

+ a10v2 + alli + a12i2 

The detailed development of the equations is given 
by HalinCBl. We merely note here that given 

tAd-vR2_ 
= 2, R3 = 10, Ll = L2 = 0.04, L3 = 0.2 

- -" = -100 sin lOOnt, the values a. 
becorn& (12,20.24, 12, 0.24, 13.64, -11.64, LSO., 
0 ., -11.64, 13.64, O., -50.0). 

To apply the method one must recognize that the 
discontinuity conditions depend on il, i 

$! vl' 
and combine them into four discon inuity 

X?on,. 

Q1 = il "i = ii 

O2 = i2 $$ = ii 

I$ 
3 

= vl-v3 
@; 

= Vi-V; 

$J 
4 

= "2-v3 $I' = v;-v; 
4 

Results from this case are shown in Table 3. 

Table 3: Function Evaluation Required for 
Example 3 

Frequency CPS 25 50 100 
Standard Hindmarsh-Gear 585 968 1,575 
Modified Hindmarsh-Gear 237 419 804 
Improvement 60% 57% 49% 

6.4 Severe Short-Lived Discontinuity 

Consider integrating a skewed constant amplitude 

saw tooth wave for n cycles, period T where 

dy _ c 
dt- j' 

C = (+a,-b), n = Int(t/r: (19) 

(t-nr) < r-e, j=l, r--E<(t-n?) < T, j=2 - _ 

E = ra/(a+b) 

For small 5, the descent becomes very rapid and 
short lived compared to the ascent, so this 
function is impossible to integrate with standard 
methods unless the step size is limited to 
h < E. For detecting this type of discontinuity 
it is imperative to check the product sl as 
well as 52. 

Table 4 shows results for ~=10, 5.5, a=l, 
b=19, t =25. 

max 

Table 4: Algorithm Performance for Example 4 

Function CP 
Evaluation Time 

Standard Hindmarsh-Gear 463 .16 

Modified Hindmarsh-Gear 185 .12 
- 

The improvement in the 
efficient isolation of 
in the other examples, 
step size need only be 
speeds integration. 

new method is due to the 
the discontinuities as 
but here the fact that 
limited to h<r also 
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6.5 Friction Example 

The equation of motion of a sliding object, mass 
m Subject to an applied force Fa and frictional 

resistance F 
f 

is 

. . 
mx=F -F 

f 
(20) 

a 

Friction, F 
3 
, is a discontinuous function for 

static and ynamic conditions such that 

if x=0 and /Fa[ < Fs, Ff = F _ a 

if x=0 and F >F 
a s 

. 
or x>O, F 

f 
= FlfF2x 

if x=0 and F,<-F 
S 

or x<O, Ff=-F1+F2X 

The system was run for the parameters x=4(0)=0, 

m=O.64, F=0.83, Flx0.75, F2~0.28, 

0 < t < 0.1 F,=O 

0.1 < t < 0.5 _ Fa=5t 

0.5 < t < 1.0 F,=-t - 

1.0 < t < 1.5 F,=O - 

Apart from the externally applied switches, the 
problem has internal sources of discontinuity 
when motion changes direction and when the 
applied force exceeds the static friction limit. 
Applying discontinuity detection to this problem 
gives the results shown in Table 5. 

Table 5: Results for Friction Example 

Number of Function Evaluations 

Standard Method 425 

New Method 298 

7. CONCLUSIONS 

While the Runge-Kutta-Romberg algorithm is 
usually reliable, it is inefficient for handling 
discontinuities. A Merson step control might 
perform better, but the problem of attempting to 

interpolate discontinuities remains. 

In comparison, the standard Hindmarsh-Gear algo- 
rithm does quite a good job of transcending a 
discontinuity, but in cases such as Example 1, 
short-lived discontinuities can be missed unless 
the user is sufficiently alert to impose a step 
size limit. In other cases, such as the study 
of the equations describing high-temperature 
creep reported in 1121, the algorithm often 
actually fails at a discontinuity. Although it 
was this particular study that led to various 

attempts to handle discontinuities which culminated 

in the current method, the equations are unfortu- 

nately too complex to present here. The basic 

problem here was to handle extremely severe but 
short-lived discontinuities comparable to Example 4. 

It is apparent that the mechanism for detecting 
discontinuities can pay off in accuracy, relia- 
bility and efficiency at the cost of minimal 
changes to the logic structure of the integration 
algorithm. 
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