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ABSTRACT

The linear advective equation is simple in form and
yet it is one of the most difficult equations to
solve accurately by numerical means. Because its be-
havior is similar to that of the conservation equa-
tions of compressible one- or two-phase flow, the
advective equation is extremely useful for testing
numerical schemes.

This paper summarizes techniques for solving the ad-
vective equation using, the method of lines on a digi-
tal or hybrid computer, and assesses how suitable
they are for incorporation into large simulations.
Some of the dangers of using artificial dissipation
terms are described, and a weighted-residual tech-
nique is shown to be very effective.

Keywords: differential quadrature, hyperbolic PDE,
mathematical techniques, method of lines,
partial differential equations

1 INTRODUCTION

The method of lines, or differential quadrature, is
one of the few techniques for solving partial differ-
ential equations (PDEs) which can be used with equal
success on both digital and analog/hybrid computers.
The technique consists of converting the PDEs into

ordinary differential equations (ODEs) by finite
difference, spline, or weighted-residual techniques,
and integrating the resulting ODEs. The technique
is problem-independent and is popular because of its
versatility, modularity, and ease of implementation.
Several recently published software packages for
automated method-of-lines solution of arbitrarily
defined PDEs have been very successful, particularly
for parabolic and elliptic PDE systems.2,12,15

Hyperbolic equations are more difficult to solve
because of their characteristic behaviour. First-

order hyperbolic equations are particularly difficult
to solve because they transmit discontinuities without
dispersion or dissipation. Unfortunately, any
attempt to use a finite number of space intervals
introduces dispersion and spurious oscillation.
Traditional symmetric techniques can only be used if
an arbitrary second-order artificial viscosity or
damping term is added to the equation. Directional

(or upwind) techniques have proved superior for both
finite-difference and finite-element analyses, since

they diminish the oscillation problem, although they
do not eliminate it.3,13

The linear advective equation

is the simplest imaginable PDE, and the great diffi-
culty of solving it numerically causes considerable
embarrassment to those attempting to solve complex
PDE systems. However, it does provide a good case
for testing methods to be used on systems of hyper-
bolic equations. Many schemes have been tested on it,
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generally by using a propagating step, sine, Guassian,
or Chapeau (triangular) wave form.6’11 1

Frequency analysis of a proposed model is very inform-

ative and may be readily done on a hybrid computer if
analytical methods are too complex. The frequency
response can be obtained by perturbing the model with
a pseudorandom binary sequence (PRBS), and analyzing
the response with a Fast Fourier Transform (FFT).
This gives gain and phase as functions of frequency.
Identical results can be obtained by using sine-wave
excitations at many different frequencies, but the
PRBS/FFT technique is comprehensive.

The above techniques were used to provide a rationale
for choosing a spatial scheme for first-order hyper-
bolic equations. The optimal choice is not invariant,
but depends on the application. An optimal scheme
minimizes not only errors in amplitude and phase
velocity but also spurious oscillations, which can
cause serious numerical instability.17 Thus a mea-

sure of the quality of numerical schemes must include
the integrated absolute error obtained from the time
response in addition to the gain and phase error
obtained from the frequency response.

We are interested in developing suitable techniques
for solving the conservation equations of compressible
one- or two-phase flow. These are normally systems
of three coupled hyperbolic equations which can
transmit discontinuities in the spatial profiles of
one or more variables. Thus we use the advective

equation as a test case to develop a suitable tech-
nique, and then progress to the conservation equa-
tions. Because the technique must be used in large
systems, we must add to our criteria of minimum

phase, gain, and integration errors the requirements
that the technique be computationally fast and
problem-independent.

Available schemes were assessed using a hybrid com-
puter and the digital method-of-lines packages
FORSIM4 and PDECOL.12 We found that we could im-

prove the facilities for hyperbolic equations in the
FORSIM package by incorporating an upwind weighted-
residual technique. This technique is similar to but
superior to the use of an artificial viscosity term
and could easily be used in any package.

2 METHODOLOGY

Consider the advective equation

and represent the distributed variable u by some
approximating function at a finite number of points N.

The x and t variables are now separated into basis
functions b2(x) and time functions ui(t).
There are now several recourses, of which we will
consider two major categories.

(a) Finite-difference method

Obtain an approximation to the term 3u/3r by
differentiating (2):

This may then be substituted in (1) to give an
explicit definition of ~u/Dt at each station j:

Equation 4 may then be integrated as a set of N
explicitly defined ODEs of the form U = K U.

(b) Finite-element method

In this case substitute (2) in both terms of (1),
and obtain an expression for the residual R that
is the absolute value of the deviation:

Now attempt to minimize R by integrating over the
domain of interest using an appropriate weighting
function w~(x), the choice of which defines the
method.

Thus for either the finite-difference method or the
finite-element method, the system of ordinary differ-
ential equations becomes

where M and K are known as the mass and stiffness
matrices in finite-element terminology.

For finite elements, M and K are normally sparse and
banded, and M is normally symmetric. For finite-
difference methods, the form of K is similar, but M
is the diagonal matrix I. 

~ -

Thus the main difference between the methods is the
structure of the M_ matrix. However, the components
of M_ are independent of time, so the associated stan-
dar~ upper and lower triangle (LU) decomposition need
be done only once to obtain

Direct matrix inversion of (8) is not efficient on a

hybrid computer. An alternate implicit method can be
derived by dividing M into its diagonal (jj) and off-

diagonal (M0) parts.- 
~~D

This leads to

which can be easily solved on a hybrid computer pro-
vided that the elements of MDIJ10 are small compared
to unity. 

D 0
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3 THE APPROXIMATING FUNCTION

Many different approximating functions can be used,
even for the finite-difference formulation; this
number is still larger for the finite-element approact
We shall consider the more popular choices.

Lagrangian polynomials
One may develop one class of expressions for the

spatial derivative by differentiating the Lagrange
interpolation polynomial

Using (10), we may obtain the two most common approxi-
mations

I I 1,... %

(which is the two-point upwind formula when the
velocity v is positive) and the three-point central
formula

Higher-order approximations not only are more accurate
but also reduce the stiffness of the resulting ODE
set.10 Thus we may also derive from (10) a three-

point upwind formula

and a four-point upwind-biased formula

Other formulae can be obtained similarly and a complete
list is given in Reference 1.

Hermitian interpolation

Lagrangian polynomials are based on functional values
alone, whereas Hermitian formulae also involve deriva-
tives. Any Hermitian formula can be expressed as

where the ai and bZ functions are m = nl + n2 poly-
nomials of order m-1, in which the coefficients are
determined from the identities

As derivatives of order greater than m are zero,
formulae for first and second derivatives can be

developed by differentiating (15). For example,
considering (15) in an upwind sense, nl = 2, n2 = 1
gives the formula

Repeating for n2 = gives a function uh(x) with a
continuous first derivative. Other values of nl and
n2 may be used; nl = 3, n2 = 1 gives

SpZine functions
Cubic splines may be generated by assuming a cubic
interpolation function between the nodes and forcing
continuity of the function and its first two deriva-
tives. In addition, the assumption of a boundary con-
dition at each endpoint is required. The assumption
of zero second derivatives at the endpoints is the
most convenient in our case. For equally spaced
nodes, this will lead to one of the tridiagonal
equation sets

The spline interpolation formulae are given by the
Hermitian interpolants for x2 

< x < x i+l

C splines of order N+1 have been used for N = 0 to20,12 but in general, cubic splines are the highest
practical order, as a banded matrix solution analo-

gous to (18) is time-consuming for higher orders.

4 ARTIFICIAL DISSIPATION

Traditional symmetric approaches to defining the
interpolation polynomial lead to a solution with
severe spurious oscillations. Directional approaches
tend to be more stable.

Richtmeyer and Mortonl4 have summarized the two
approaches for low-order finite-difference techniques.
The upwind two-point difference (Equation 11) yields
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a non-oscillatory, heavily dispersed result, while
the central difference of Equation 12 yields a solu-
tion with severe spurious oscillations trailing the
signal wave.

They, therefore, suggest the addition of an artificial
second-order viscosity term which will dissipate the
oscillations, hopefully without greatly affecting the
true solution. Thus (1) becomes

where a is chosen empirically. Again one can use
finite-element or finite-difference techniques to
solve (21).

This causes some concern, since mathematically (21)
now requires an extra boundary condition not
apparent from the physics. In practice no extra
condition is imposed.

Heydweiler and Sincovec8 have made an alternative
attempt to combat dissipation and oscillation by
combining (11) and (12) parametrically as follows

Note that (21) reduces to (11) for 8 = 1, and

approaches (12) for large S.

5 WEIGHTING FUNCTIONS

The weighting functions used in the finite-element
method are normally of the Galerkin type wi(t) = b2(x).
In particular, if one uses the Galerkin weighted-
residual method with piecewise linear ’Chapeau’ basis
functions as described by Strang and Fixl4 on (21),
one obtains the formula

Equation 23 is stated in parametric form using y.
When y = 0, Equation 23 reduces to the finite-differ-
ence formulation, y= ’-2 gives the linear finite-
element formulation, and other values of y may be
readily explored. Vichnevetskyl8 has developed
optimum combinations of a and y for Equation 23,
showing that a nonzero value of y affects accuracy
more than a nonzero value of a. Thus the finite-

element formulation is considerably more powerful
than the finite-difference formulation. Unfortunate-

ly, the optimum (a,y) combination is a function of

dimensionless time vt/x.

The upwind weighted-residual method

Since upwind techniques have proved useful and the
finite-element approach is more accurate than centered
finite differences, a combination of upwind and
finite-element techniques would seem to be desirable.

Upwind weighting of finite elements has been consider-
ed by Christie et aZ.5 for solving the steady-state
diffusion equation with convective terms.

Here we shall apply a similar philosophy to the advec-
tive equation, choosing linear basis functions b2(x)
in (2) as follows: 

For the standard Galerkin approach, the weighting
functions !J~(.c) in (6) are the shape functions them-
selves w. (X) = b .(x) . For upwind elements, choose
instead J J

for the upwind element
(26)

for the downwind element

where 6 is a weighting parameter to be investigated
below. The function f(x) is chosen to satisfy the
requirements f(0) = f(h) = 0 and the simplest form is

Substituting (19) to (21) in (6) and performing the
integrations, we get

L i

which can be rearranged to give

This is identical in form to the standard statement
of linear finite elements with artificial dissipation,
except that the mass matrix is no longer symmetric.
The upwind weighting appears in both the stiffness
and mass matrices, and it will be seen below that this

greatly increases the effectiveness of the method.
Also, as (29) is obtained directly from (1) without
adding an artificial dissipation term as in (20), no
extra boundary condition is required. This is in

agreement with the ad hoc omission of the extra con-
dition when using (21). It is interesting to note
that (14) and (17) can also be rearranged to reveal
dissipative terms.

6 ASSESSMENT CRITERIA

By using an error-controlled variable-step algorithm,
such as the Hindmarsh-Gear integrator used in FORSIM,3

i or by integrating on the analog computer, one can
ensure that the integration error is negligible in
comparison with the spatial error.7 Spatial error
can always be reduced by finer discretization, but

- this is expensive. One may, however, assess the
relative efficiency of various spatial schemes using
the same integrator and the same spatial grid.
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We have performed two basic tests on these systems
giving frequency response and time response. The

frequency response to sinusoidal inputs is represent-
ed by the gain (in dB) and phase shift for each fre-

quency. It contains the same information as the time

response, but in a format which is more useful in

certain applications. The frequency response is com-
pared to the ideal and the error is quantified in
terms of bandwidth (frequency range for gain error
of less than 3dB) and phase error.

Bandwidth is strongly related to dispersion, with low
bandwidth indicating large dispersion. However,
large bandwidths may also result from &dquo;peaking&dquo; in
the gain curve above unity at some frequencies. This

high gain will generate excessive spurious oscilla-
tion in the time response.

The phase error represents variation of velocity with
frequency and also is strongly related to spurious
oscillation. A negative phase error indicates that
the velocity is too great, and oscillations lead the

step response; a positive phase error indicates that
the velocity is too low, and oscillations trail the

step response.

In most cases, the frequency response may be obtained
analytically, as shown by Vichnevetsky.l8 However,

in our case we choose to use the Pseudo-Random Binary
Sequence/Fast Fourier Transform technique.9 This is

much easier to implement on the analog computer than
on the digital computer. A filtered PRBS signal is

used as the input perturbation ’function. This signal
is ideal for the purpose as it contains components of

significant amplitude over a large frequency range.
The input and output signals of the model are then

analysed by an FFT-based program. The frequency
response, which is also the Fourier transform of the

impulse response, is given by

where

U(jw) = Fourier transform of u(t)

F(jw) = frequency response

and the subscripts 0 and N refer to the input and

output nodes, respectively.

The time response is the transient response at various

points xi to an input perturbation. Accuracy may be

quantified by integrating the error, which appears as

(a) Spurious oscillations leading or trailing the
signal

(b) Dispersion of the signal over time.

To ensure that both these effects are incorporated in
the error assessment, the absolute error was inte-

grated for each scheme over a time interval of twice
the theoretical transit time of a perturbation. Thus

at any point x. 1,

The overall error, obtained by integrating x from 0 to
L, was approximated by using the four points
x = 0.25L, 0.5L, 0.75L, and L.

Figure 1 - Frequency and time responses of selected

finite-difference schemes
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Finally, a relative error for each scheme j is obtain-
ed by dividing by the overall error for the three-
point central-finite-difference scheme, E~3C

Figure 2 - Time response of two-point upwind scheme
to a triangular wave. Plots are values of time

responses U at four stations x.
~

A time response may also be obtained from the fre-
quency response by means of an inverse Fourier trans-
form. To further illustrate the reciprocal relation-
ship between frequency and time responses, we show in
Figure la the frequency response for two-point upwind,
four-point upwind, and four-point upwind biased
finite-difference simulations at the point x = 1.
Figure lb shows the corresponding time responses.
Note that the two-point upwind formula has consider-
able dissipation because of its low bandwidth, and
that the peak in the gain curve of the four-point
upwind scheme results in large spurious oscillations
leading the signal. Finally, the four-point upwind
bias method has a good bandwidth, no positive gain
error, and a well-behaved time response.

On the basis of the step response test alone, one

might be prepared to accept the two-point difference
scheme since it behaves very stably. However, the
low bandwidth shows that any waveform will be severe-
ly attenuated by this scheme. This is illustrated by
the progression of a triangular wave in Figure 2.

7 BOUNDARY NODES

In both the finite-element and finite-difference
approaches, it is normally not possible to use exactly
the same scheme at the boundary nodes as at the others.
For finite-element schemes the matrix is set up to
eliminate Ui. For finite-difference formulae one can
maintain directionality at the expense of order or
vice versa, i.e., one can maintain directionality by
using progressively fewer points or maintain order by
keeping the same number of points and sacrificing
directionality. We have found that the former degrades
the frequency response considerably, and the latter is
preferable even though it may require the use of a
downwind formulation for the first node.

Table 1

Normalized integrated error and computation time for selected schemes

* normalized with respect to three-point Central Finite Scheme
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8 ANALYSIS OF SELECTED SCHEMES

The above techniques were used to provide integrated
error and bandwidth as criteria of assessment for
selected spatial schemes. To provide a relative
efficiency criterion, we also include the digital
computation time for the FORSIM package, normalized
with respect to the three-point central finite-
difference scheme. For 25 nodes, this is about two

seconds, or approximately real time, on the CDC CYBER
170 model 175 computer. Analog time is about four
milliseconds.

The results are summarized in Table 1. Included also
are results from the PDECOL package using a finite-
element collocation method with splines of up to
sixth order (KO = 7) to illustrate what accuracy can
be obtained if no restriction is placed on computa-
tional complexity.

While quite accurate, the high-order spline methods
in PDECOL obviously consume excessive time when the
banding in the matrices is wider than tridiagonal.
The Upwind Weighted-Residual (UWR) method is superior
in performance to the Linear Finite-Element method
with Artificial Dissipation (LFEAD) because of the
additional weighting in the mass matrix. In either
case the choice of weighting factor a or e is some-
what arbitrary, but it is important to note that the
UWR method is much less sensitive to this choice.
In applying (23) to various combinations of v, Ar,
and signal amplitude, it becomes obvious that the
effect of a given a depends strongly on v and Ar.
This may be rationalized by rearranging (23) as

follows:

This indicates that a’ = 2alvAx, not a, is the rele-
vant parameter. Physically, this means the diffusion
added must be related to the convection. This may
also be discovered by comparing (33) and (29), since

equality of the right-hand sides occurs when
E = 2a/vAx. Using this relationship, any difference
in the two methods will be due entirely to the upwind
weighting of the mass matrix in (29). Figure 3

therefore shows normalized error for step-wave propa-
gation in (23) and (28) for various combinations of

y, a’, and e. Curve A is Equation 23 with y = 0 or

three-point finite difference, curve B is (23) with
y = 0.5 or three-point finite element. Curve C is

(29), the upwind weighted residual. Similar curves

may be obtained for triangular waves.

The UWR method produces only a marginal improvement
in minimum attainable error, but this method performs
well over quite a wide range of E because of the up-
wind weighting of the mass matrix. The LFE method is
much more sensitive to the choice of a’, having an
optimum value a’ ~ 0.8.

However, in applications, the appropriate form of UWR
must be developed for each equation set and this may
be a disadvantage. The weights can of course be
estimated or the integrals evaluated numerically, but
this will tend to destroy the superior accuracy mar-
gin of the method. For general applications, there-

fore, it is more straightforward and almost as effec-

Figure 3 - Effect of weighting parameter

tive to use artificial dissipation in the finite-
element formulation by applying a cubic-spline approx-
imating function in the quasi-Lagrangian sense, as

long as the weighting parameter is chosen with care.

The Hermite 3,1 formulation, Equation 17, also per-
forms well if one can estimate C8u/8x)0. For our

simple test cases we use a first-order estimate.
Finally, note that the simple four- and five-point
upwind biased formulae are fast, stable and reasona-
bly accurate. The boundary conditions are simpler to
include than for the spline case, and one merely
ensures that the boundary formulae maintain the order
of approximation as mentioned above.

The gain and phase frequency response of the optimum
UWR scheme is given in Figure 4, and the time respon-
ses at x = 1 for the above four schemes are given for
a triangular signal wave in Figure 5.

Finally, Figure 6 shows bandwidth, normalized by
multiplying by x/v, as a function of number of nodes
for selected schemes, and may be used to choose an
appropriate number of nodes for a required perform-
ance. The theoretical maximum bandwidth is given by
Shannon’s sampling theorem, which states that there
must be at least two samples per cycle of the highest
frequency present. In practice, attainable bandwidth
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- - ..

Figure 4 - Linear finite-element frequency response; upwind weighting factor =0.50 ’

~ imc

5a Progression of a triangular wave
4-point upwind bias finite difference

’rime

5b Progression of a triangular wave
3-point upwind Hermite

5c Progression of a triangular wave
lin finite element ALFP = 0

---..-

5d Progression of a triangular wave
lin finite element ALFP = 0.08

Figure 5 - Time response of selected schemes to a triangular wave. Plots are values of U at various stations xi
_
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Figure 5 - Time responses of selected schemes to
a triangular wave. Plots are values of U at

various stations x.
1

Figure 6 - Bandwidth as a function of discretization
framework

is about a third of this value. The required band-
width for a simulation depends on the nature of the
signal being transmitted. Smooth signals may be
simulated adequately using a low bandwidth scheme,
but signals containing step changes have high band-
width requirements.

9 CONCLUDING REMARKS

Any scheme which is to be stable must have dissipation
built in by upwind weighting or included as an addi-
tional term. In the latter case the amount of dis-

sipation added must be compatible with the convective
term.

The optimum order is cubic, since good accuracy is
achieved efficiently. Higher-order methods manipulate
matrices denser than tridiagonal, requiring excessive
time without greatly improving accuracy.

The Upwind Weighted Residual method is more robust
than the linear finite-element method with added

dissipation because of the weighting in the mass
matrix. However, one can implement the latter much
more readily by using a cubic spline in a quasi-
Lagrangian sense, and this may be attractive if the

appropriate weighting factor is carefully established.

The Hermite 3,1 formula (Equation 17) is also effec-
tive if one can realistically approximate (au/ax)0.
Finally, for many applications, the four-point 
upwind bias formula (Equation 14) will behave quite
adequately, since it is fast, stable, extremely easy
to implement, and is not subject to the uncertainties
of artificial dissipation.

While the results here pertain directly to the advec-
tive equation, the properties which this equation has
in common with hyperbolic equation sets make it a

useful test case. We believe that the conclusions of
this study can be extrapolated in a qualitative man-
ner and we plan further studies involving hyperbolic
equations.

APPENDIX A

Upwind weighted residuals

Choose the approximation

and linear chapeau-shape function

Thus

Standard Galerkin uses weight functions ~. or W.
orthogonal to ~~. Applying this to 

~ ~

J

we have

where only j 0,2 is required as one of the orthogonal
functions is zero elsewhere.

 at PENNSYLVANIA STATE UNIV on May 16, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


68

To achieve upwind weighting as shown in the figure,
let us instead define

We chose

Thus (AS) becomes

(A6) must be solved term by term for clarity. The
first term is

which gives

Repeating the analysis for end elements one obtains
the matrix

Note that for null upwind weighting, i.e., E = 0, (A8)
reduces to the standard Galerkin formulation.

--

APPENDIX B

Equivalence of linear finite-element
. and finite-difference cubic spline

Consider the advective equation with artificial
dissipation

The linear finite-element approximation gives
I ., , 1 1

and is solved using

or

where the elements of

The cubic spline approximation applied to the right-
hand side of (B2) defines the spatial derivatives U’
and U&dquo; by (18) and (19) as follows:

or

Inserting these now into the right-hand side of (21)
in the finite-difference manner, we have

as in (B3).
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ERRATA for The method of Lines and the Advective Equation, Carver & Hinds Simulation, 1978

Equation 13 should be:

(ďu/ďx)i =(3ui-4ui-1+ui-2)/2Δx

Equation 14 should be:

(ďu/ďx)i =(ui-2-6ui-1+3ui+2ui+1)/6Δx

These are correct in later papers.

M.B. Carver


