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4. Forced Convection Heat Transfer

In Chapter 3, we have discussed the problems of heat conduction and

used the convection as one of the boundary conditions that can be applied to

the surface of a conducting solid. We also assumed that the heat transfer rate

from the solid surface was given by Newton's law of cooling:

q" =h,A~w-tJ

In the above application, he' the convection heat transfer coefficient has been

supposed known. The aim of this chapter is to discuss the basis of heat

convection in fluids and to present methods (correlations) to predict the value of

the convection heat transfer coefficient (or film coefficient).

As already pointed out. the convection is the term used to indicate heat

transfer which takes place in a fluid because of a combination of conduction due

to molecular interactions and energy transport due to the motion of the fluid

bulk. The motion of the fluid bulk brings the hot regions of the fluid into contact

with the cold regions. If the motion of the fluid is sustained by a force in the form

of pressure difference created by an external device, pump or fan, the term of

"forced convection is used". If the motion of the fluid is sustained by the

presence of a thermally induced density gradient. then the term of "natural

convection" is used.

In both cases, forced or natural convection, an analytical determination

of the convection heat transfer coefficient. he' requires the knowledge of

temperature distribution in the fluid flowing on the heated surface. Usually, the

fluid in the close vicinity of the solid wall is practically motionless. Therefore, the

heat flux from the solid wall can be evaluated in terms of the fluid temperature

gradient at the surface:

qll = -k (!!!-)
cv Idn s 4.2
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where

kf : thennal conductivity of the fluid

(.E!.) :fluid temperature gradient at the surface in the direction of the normal to the surface
dn s

The variation of the temperature in the fluid is schematically illustrated in Figure

4.1. Combining Equations 4.1 and 4.2 we obtain:

4.2a

where

tw : temperature of the wall

tf : temperature of the fluid far from the wall

(01)
oy ..

Figure 4.1 Variation of the temperature in the fluid next to the heated surface

The analytical determination of he given with Equation 4.2a is quite

complex and reqLires the solution of the fundamental equations governing the
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motion of viscous fluid; equations of conservations of mass, momentum and

energy. A brief discussion of these equations was given in Chapter 2.

4.1 Fundamental Aspects of Viscous Motion and Boundary Layer

Motion

4.1.1 Viscosity

F

u

,/

I

e
i

Fix woI!

t---..----

The nature of viscosity is best visualized with the following experiment.

Consider a liquid placed in the space between two plates, one of which is at

rest, the other moves with a constant velocity U under the effect of a force F.

The experimental setup is illustrated in Figure 4.2.

U

Figure 4.2 Shear stress applied to a fluid

The distance between the plates is e and the surface area of the upper

plate in contact with liquid is A. Because of the non-slip cond ition, the fluid

velocity at the lower plate is zero and at the upper plate is U. Assuming that the

Couette flow conditions prevail (ie, no pressure gradient in the flow direction) a

linear velocity distribution, as shown in Figure 4.1, develops between the plates

and is given by:

U
u=-y

e 4.3
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The slope of this distribution is constant and given by:

du U
dy=~

The shear stress exerted by the plate to the liquid is written as:

F
T=-

A

It is possible to repeat the above experiment for different forces (i.e.

upper plate velocities) and plot the resulting shear stress, T, versus the slope of

the velocity distribution (du Idy). Such a plot is shown in Figure 4.3.

10<::.. -.

du/dy

Figure 4.3 T versus (du Idy)

Data points lie on a straight line that passes through the origin. Therefore T is

proportional to the velocity gradient, (du Idy) and the constant of proportionality

is J1. J1 is called the "dynamic viscosity". Based on the above discussion, the

shear stress can be written as:

du
T=J1-

dy 4.5

In a more general way, consider a laminar flow over a p lane wall. The velocity

of the fluid is parallel to the wall and varies from zero to some value far from the
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wall. The velocity distribution close to the wall, as depicted in Figure 4.4 is not

linear.

s

o

u

du
V4Y

11- S
~-

,
A

~Tf u

Figure 4.4 Velocity distribution next to a wall

Let us select a plane SS parallel to the wall. The fluid layers on either side of SS

experience a shearing force '!' due to their relative motion. The shearing stress,

'!', produced by this relative motion is again directly proportional to the velocity

gradient in a direction normal to the plane SS:

1: =J1(dU)
dy ss

The ratio of the dynamic viscosity to the specific mass of the fluid

v=l!:.
p

is called "kinematic viscosity"

The dynamic viscosity has dimensions:

1: F T FT
J1 = du =L' ZL=lf

dy

4.6

4.7

4.8

F,L,T are force, length and time, respectively. In the Sf, the dimensions of the

dynamic viscosity becomes:
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NsJl=­
m2

The dimensions of the kinematic viscosity are:

L2

v=-
T

or in Sf units

m'
v=­

s

The physical basis of viscosity is the momentum exchange between the

fluid layers. To understand better this statement, consider one dimensional

laminar flow of a dilute gas on a plane wall as depicted in Figure 4.5. The

velocity of the fluid U is only a function of y. Let us imagine in the flow a

surface SS parallel to the plane wall.

y

uo

-+-+----t'----i---E!-'A u(y+:A.}

s--+-+-+~;t;.=-++fA~U~Y_:A.)

1"6 nI1mu(y + A.)

u

1- nI1mu(y - A.)
6

Figure 4.5 Momentum exchange by molecular diffusion

Because of the random thermal velocities, gas molecules continually

cross the SS surface both above and below. We may assume that the last

collision before crossing the surface SS, each molecule acquires the flow

velocity corresponding to the height at which this collision has taken place.



Page 4.8

Since this velocity above the 55 is greater than that below, molecules crossing

from above transport a greater momentum in the direction of the flow across the

surface than that transported by the molecules crossing the same surface from

below. The result is a net transport of momentum across the surface 55 from

the region above to the region below. According to the Newton's second law,

this change of momentum is balanced by the viscous force. This is the reason

for which the region of gas above 55 is submitted to a force which is due to the

region of the gas below 55 (- T) and vice versa ( T).

We will try now to estimate in an approximate manner the dynamic of

viscosity 11. If there are m molecules per unit volume of the dilute gas,

approximately 1/3 of these molecules have an average velocity ( v) parallel to

1
the y-axis. From these molecules. half of them (ie. 6n

) have an average

velocity in the direction of Y' and the other half have an average velocity in the

1 -
direction of Y-. Consequently. an average 6nv molecules cross the plane 55

per unit surface and per unit time from above to below and vice versa.

Molecules coming from above 55 undergo their last collision at a distance

approximately equal to the mean free path A and their flow velocity is tis + A)

and their momentum is mti•.Y + A) where m is the mass of the molecule. The

same argument is also true for molecules coming from below the surface 55

and their velocity is tis - A) and momentum mtis -A). Therefore. the

momentum component in the direction of the flow that crosses the surface 55

from above to below is:

inv [mu(Y+A)] 4.9

and from below to above:

-t Ii· rNvdA - Lii· pJdA+Lii~dA =0 in\' [mu(y -A)] 4.10
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The net momentum transport is the difference between Eqs 4.10 and 4.9 and

according to the Newton's second law should be balanced by a viscous force. r.
Therefore we may write:

r =1nvm[u(y - A)- (y + A)]
6 4.11

Developing u(y - A) and u(y + A) in Taylor series and neglecting the terms of

second and higher orders, we obtain:

du
u(Y +A):o u(y )+A dy

u(Y-A):oU(Y)-A:

Substitution of Eqs 4.12 and 4.13 into 4.11 yields.

1 _ du du
r=--nvmA-= -tJ.-

3 dy dy

4.13

4.14

The negative sign shows that the viscous stress acting on the upper face of 55

surface is in the direction opposite to the flow direction (or X'). From 4.14 we

observe that:

1 _ ,
tJ. =-nvm"3

Although the constant 1/3 may not be correct. the dependence of tJ. on

11, v.m and A should be rather correct.

4.1.2 Fluid Conservation Equations- Laminar Flow

4.15

We have already pointed out that the analytical determination of the

convection heat transfer coefficient defined with Eq. 4.2 requires the solution of

the fluid conservation equations: mass, momentum and energy to obtain the

temperature distribution in the fluid washing the heated solid. Once the
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temperature distribution is determined and if the fluid motion in the region

immediately adjacent to the heated wall ;s laminar, which is usually the case, the

convection heat transfer coefficient is then determined by using Eq. 4.2. The

derivation of the fluid conservation equations is beyond the objective of this

course. We will present within the framework of this course, the basic elements

which enter in the derivation of the conservation equations and present these

equations for an incompressible flow.

In Chapter 2, we have already established that the fluid conservation

equations have the following forms:

I) Local mass conservation equation

a -
aT P+V.pV =0

II) Local momentum conservation equation

a - - - --
aTpV +VpVv =VpI + V·O' +pg

III) Energy conservation equation (total energy in enthalpy form)

.2.- j h + l v' v)_.2.- P+ ",.1h + lv· v)v
aT i1... 2 aT i1... 2

= -Y'. q' +V'. f v)+ pg' V+ d;

In the above equation:

1 0 ~l:,; is the unit tensor = 0 1

o 0

(J~ (J", (Ju

C; is the stress tensor = (Jy, (J" (Jy,

(Ju (J"! (Ju

2.6

4.7

4.8
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h enthalpy

p pressure

v velocity ( u,v,w are components of the velocity vector)

p specific mass

g acceleration of gravity

iT: heat flux

Q';: energy generation

Each term of the stress tensor can be related to the velocity gradients as follows

(Janna, 1986)

Furthermore we know that
~

ij'=-kV·/

Assuming that

1. The fluid is incompressible and has constant properties, i.e.,

c p' p, Jl. and k are constant,

2. The kinetic energy and potential energies are negligible,

4.9

4.10

4.11

4.12

4.13

4.14

4.15
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ap
3. The pressure doesn't change with time, ar =0

4. No energy generation (f, =0,

and taking into account Eq. 4.9 through 4.15, the conservation equations (Eq's

4.6,4.7 and 4.8) become:

1. Mass conservation equation

au av Ow
-+-+-=0ax ay ()z

11. Momentum conservation equation

x-component

~
au au au au) ail ~()2U a'u ()2u)-+u-+v-+w- =-=+ -+-+- +pgar ax ay az ax ax' ay' az' x

y-component

j av av av av)_ l!E .ra'v a'v a'v)
1\ar + u ax +vay + W az - - ay +1.ax' + Oy' + az' + Pfi,

z-component

~
Ow Ow Ow Ow) ail (a'w a'w a'w)-+u-+v-+w- =-=+J.l -+-+- +pgar ax Oy az az ax' ay' az' ,

where

,,~(a)' (av)' (Ow),] (a CIv)' (av Ow)' (Ow a)'1/1= La; + ()y + az + ~ + at + az + ay + ax + a;

4.16

4.17

4.18

4.19

4.20

J1I/) is the viscous dissipation term, it is usually negligible compared to heat

transferred. Eqs. 4.17 through 4.19 are known as Navier-Stokes equations. In
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the problems of heat convection is a three-dimensional incompressible laminar

flow, the energy equation (Eq. 4.20) must be solved to obtain the temperature

distribution in the fluid. However, this equation contains the three components

of the velocity and its solution can only be carried out in conjunction with the

mass conservation equations and Navier·Stokes equations for a given set of

boundary conditions: shape and temperature of the heated body over which the

fluid flows, the fluid velocity and temperature far from the body, etc. For the

incompressible and constant property fluid we selected the unknown quantities

are: u, v, w, p and t. There are five equations: 4.16 through 4.20 to determine

these unknowns. Once the temperature distribution in the fluid is known, the

convection heat transfer coefficient at a given point on the heated surface can

be determined with the aid of Eq. 4.2.

It should be pointed out that the basic equations that govern the

convection are non-linear and are among the most complex equations of applied

mathematics. No general mel10ds are available for the solution of these

equations. Analytical solutions eXist for very simple cases. In recent years, with

the advent of high-speed and high-capacity computers, a good deal of progress

has been made in the analysis of complicated heat transfer problems. However,

these analysis is time consuming and very costly. Fortunately, a large number

of engineering problems can be adequately handled by using simplified forms of

the conservation equations, ie., by using a one dimensional model and

experimentally determined constitutive equations such as friction and heat

transfer coefficients. The solution of these simplified forms can be obtained

more easily. On the other hand, the soundness if the assumptions made to

obtain the simplified forms of the conservation equations should be verified by

ad-hoc experiments.

The conservation equations derived above apply to a laminar fluid

motion. In laminar flows, the fluid particles follow well-defined streamlines.

These streamlines remain parallel to each other and they are smooth. Heat and
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momentum are transferred across the streamlines (or between the adjacent fluid

layers which slide relative to one another) only by molecular diffusion as

described in Section 4.1. Therefore, the cross flow is so small that when a

coloured dye is injected into the fluid at some point, it follows the streamline

without an appreciable mixing. Laminar flow exists at relatively low velocities.

4.3 Fluid Conservation Equation - Turbulent Flow

The term turbulent is used to indicate that there are random variations

or fluctuations of the flow parameters such as velocity, pressure and arid

temperatures about a mean value. Figure 4.6 illustrates, for example, the

fluctuations of the u component of the velocity oblained from a hot-wire

anemometer.

II

L-L--+-....r.-------=i-limo---t..~
a'ta

Figure 4.6 Turbulent velocity fluctuations about a time average.

If we denote by u the time average velocity and by u'

the time dependent velocity fluctuation about that average value, the true

velocity may be written as:

u= U+u'

The same reasoning may also be done for two components and write:

4.21



4.24

4.25

Page 4.15

v =v +v' 4.22

w= w+ w' 4.23

Because of these randomly fluctuating velocities. the fluid particles do

not stay in one layer but move tortuously throughout the flow. This means that a

certain amount of mixing and energy exchange occurs between the fluid layers

due to the random motion of fluid particles. This type of mixing is nOrHlxistent in

laminar flows and is of great importance in heat transfer problems since the

random motion of the particles tend to increase the rate of heat exchange

between the fluid layers. As a matter of fact. the rate of heat transfer is

generally much higher in turbulent flows than in laminar flow. Turbulent flow

exists at velocities that are much higher than in laminar flow. As a final note, the

pressures and temperatures in turbulent flows are written as:

p= p+ p'

The average values appearing in Eqs. 4.21 through 4.25 for steady turbulent

motion are given by:

- 1 SM,
j = t1'f

1

0 jdr, independent of time for steady flows
4.26

The time interval M, is taken large enough to exceed amply the period of the

fluctuations. On the other hand, the time average of the fluctuations, j'is zero:

- I rA', ISM", -\J - -
I'=-j, j'd'f=- V -jp'f=j-j=O

t1'f1 0 t1'f1 0

In the above discussion j may denote any flow parameter.

4.27

To obtain the fluid conservation equations which apply to a turbulent flow. we

substitute in Eqs. 4.16 through 4.20, u,v, w,p and t by Eqs. 4.21,4.22,4.23.

4.24 and 4.25 respectively. Since in most of the convection problems the

viscous dissipation is negligible. this term can be dropped from the energy

conservation equation (Eq. 4.20). The next step consists of time averaging of

the resulting equations by taking into account the following averaging rules:
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f=i+/' 4.28

g=g+g
,

4.29

/,=g=O 4,30

f+g=f+g 4.31
-.
ff' =gg' =0 4,32

fg= Ti+ f'g' 4.33

f' =(i)' +(/')'
4.34

(af)= atax ax 4.35

ll-oar- 4.36

(~)=O
4.37

cf =c f (c is a constant) 4.38

The following conservation equations are then obtained for steady turbulent
-----------------

flows:

I. Mass conservation equation

au aV aw-+-+-=0ax ay az
II. Momentum conservation equation:

x-component

{
-a; -a; -a;) an - a - a -,-, a -,-,u- +v- +w- =_::L+JI.'V'u--pu 12 _-pu V - -pu wax ay (£ ax A~ ib: qL _

y-component

{
-av -av -av) an - a -, a li a -,-,u-+v-+w- =-=+Jl.V'v--pu'v --pv --pvwax dy az ay _~ q1: __ • q~ _

4.39

4.40

4.41
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z-eomponent

{
- riW -aw - aw) ap - a -,-, a =-> au-+v-+w- =-- +J/.v'w--pu w --pvw --(iW12ax ()y az az _q:.r ~ qL __

III. Energy conservation equation

(- ai -ai -ai) a - a - a -IX' u-+v-+w- =kV't- -IX' u't'-- IX' v'f -- pc wt'
p ax ay az ~ __: }y : ~~. __p _

where

4.42

4.43

4.44

Examination of the about equations shows that the usual steady equations (Eq.

au av aw and ~
4.16 through 4.20 with ar' ar' ar arterms equal zero) may be applied to

the mean flow provided certain additional terms are included. These terms,

indicated by dashed underli nes and they are associated with the turbulent

fluctuations. The fluctuating terms appearing in Eq. 4.40 to 4.42 represent the

components of the "turbulent momentum flux" and they are usually referred to

as additional "apparent stresses" or "Reynold stresses" resulting from the

turbulent fluctuations. The fluctuating terms appearing in Eq. 4.43 represent the

components of "the turbulent energy flux". A discussion of the meaning of

"apparent stresses" and "turbulent energy flux" will be done during the study of a

flow over a heated wall.

4.2 The Concept of Boundary Layer

Let us consider the flow of viscous fluid over a plate, as illustrated in Fig. 4.7.
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y
u

x,u

Figure 4.7 Velocity profile in the vicinity of a plate

The velocity of the fluid far from the plate (free steam velocity) is U. If the basic

"non slip" assumption is made then the fluid particles adjacent to the surface

adhere to it and have zero velocity. Therefore, the velocity of fluid close to the

plate varies from zero at the surface to that of the free stream velocity, U.

Because of the velocity gradients, viscous stresses exist in this region and their

magnitude increases as we get closer to the wall. The viscous stresses tend to

retard the flow in the regions near to the plate.

Based on the above observations, LUdwig Prandtl, in 1904 proposed his

boundary layer theory. According to Prandtl, the motion of a fluid of small

viscosity and large velocity over a wall could be separated into two distinct

regions:

1. A very thin layer (known as velocity boundary layer) in the immediate

neighbourhood of the wall in which the flow velocity ( U) increases rapidly with

the distance from the wall. In this layer the velocity gradients are so large that

even with a small fluid viscosity, the product of the velocity gradient and the

viscosity (ie. the viscous stress, 'l") may not be negligible.

2. A potential flow region (or potential core) outside the boundary layer were the

influence of the solid wall died out and the velocity gradients are so small that

the effect of the fluid viscosity. ie. the viscous stress, 'l", can be ignored.
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A good question would be: where is the frontier between these two regions

situated? The answer is that, because of the continuous decrease of the

velocity as we move off the wall, it is not possible to define the limit of the

boundary layer and the beginning of the potential region. In practice, the limit of

the boundary layer ie., the boundary layer thickness, is taken to be the distance

to the wall at which the flow velocity has reacted some arbitrary percentage of

the undisturbed free stream velocity. 99% of the free stream velocity is the most

often used criterion.

4.2.1 Laminar Boundary Layer

The flow in the boundary layer is said to be laminar where fluid particles move

along the streamlines in an orderly manner. The criterion for a flow over a flat

plate to be laminar is that a dimensionless quantity called Reynolds number,

Re u ' and defined as:

pUx
Rex =--

f..l 4.45

should be less than 5 x 105
. The number is the ratio of the inertia forces to the

viscous forces.

The analytical study of the boundary can be conducted by using:

1. The fluid equations given by Eqs. 4.16 through 4.20, or

2. An approximate method based on integral equations of momentum and

energy.

The integral method describes, approximately, the overall behaviour of the

boundary layer. The derivation of the integral fluid equation will be given in this

section. Although the results obtained by the integral approach are not

complete and detailed as the results that may be obtained by the application of
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the differential equations, this method can still be used to obtain reasonable

accurate results in many situations.

4.2.1.1 Conservation Equations - Local Formulation

I. Mass and Momentum Equations

As a simple example, consider the flow and heat transfer on a flat plate as

illustrated in Figure 4.8.

Potentialllow region
U(x),

P.(x).

I,

. 'to

]I LConIrQlwlwnc

o ~
X,II,I

........ -----

Velocity
layer

Figure 4.8 Velocity boundary layer in Laminar flow near a plane.

The x coordinate is measured parallel to the surface starting from leading edge.

and the y coordinate is measured normal to it. The velocity and the pressure of

the fluid far from the plate are U(x) and p~ (x), respectively; usually they are

constant. The leading edge of the plate is Sharp enough not to disturb the fluid

flowing in the close vicinity of the plate. The boundary layer starts with the

leading edge of the plate and the thickness is a function of the coordinate x.

The thickness of the boundary layer is denoted by t5(x).
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Assuming that the flow field is steady and two dimensional (ie., no velocity and

temperature gradients in Z direction which is perpendicular to the plane of the

sketch), body forces P8x and P8y are negligible compared to the other terms,

Eqs 4.16 through 4.19 become:

Mass conservation equation:

au av
-+-=0ax ay

Momentum conservation:

au au _.!.2e ((fU a'u)
uax+Vay--pa:+v ax'+ay"

4.46

4.47

4.48

4.50

The coefficent v (m2/s) is the kinematic viscosity of the fluid. Even with the

above simplifications, Eqs 4.46 through 4.48 are still non-linear and cannot be

solved analytically.

An order of magnitude analysis of each term of Eqs. 4.46, 4.47 and

4.48 shows that the following terms (Schlichting, 1979)

a'u av av a'v a'v a'u av av a'v a'v
v <tt' ,uax'v ay'V ax' and v ay' v <tt' .uax'v ay'V ax' and v ay'

are very small and can be ignored. Therefore, Eqs 4.46 through 4.48 become

au + av =0
ax ()y 4.49

~ v au __LEi! a'u
ar + ()y - p ax + v ay'

4.51

Eq. 4.51 shows that, at a given x, the pressure is constant in the y -direction,

ie., it is independent of y. This result implies that the pressure gradient,
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dp /dx dp /dx , in the boundary layer, taken in a direction parallel to the wall, is

equal to the pressure gradient potential flow taken in the same direction. The

boundary conditions that apply to Eqs. 4.49 and 4.50 are:

Aty =0 u= v= 0

Aty =00 u =U(x) which is usuallycoostant

4.52

4.53

4.54

The solution of Eqs. 4.49 and 4.50 under the above boundary conditions yields

the velocity distribution and the boundary layer thickness. However, this

solution is beyond the scope of this course; it can be found in Scl1ichting (1979)

at pages 135·140.

At the outer edge of the velocity boundary layer the component of the

velocity parallel to the plate, n, becomes equal to that ofthe potential flow, U(x)

Since there is no velocity gradient in this region;

du d 2u
-=Oand -=0
dy dy2

and Eq. 4.50 becomes

dU(x) 1 dp
U(x)--=---

dX pdx

Integrating the above equation we obtain:

1
p+ - pU2(X)= Constant

2

This is nothing else but the Bernoulli equation.

4.55

4.56

II. Energy conservation equation

If the temperature of the plate ( tw ) is different from the temperature of

the mainstream ( t_), a thermal boundary layer of thickness 5, forms. Through

the layer of the fluid temperature makes the transition from the wall temperature

to the free stream temperature. The thickness of the thermal boundary layer is

in the same order of magnitude as the velocity boundary layer thickness defined
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above. However, the thicknesses of both boundary layers are not necessarily

equal (Figure 4.8).

For a two dimensional flow where viscous terms have been neglected in

comparison with the heat added from the wall, the energy equation given by Eq.

4.20 for steady state conditions takes the following form

u2!..+v2!..=~. (a2t
+ a2

t)ax ()y pcp ax 2 ay2

An order of magnitude analysis shows that the term

a't
ax'

a't
Is very small and can be ignored compared to ()y'. Therefore Eq. 4.55

becomes:

at at a'tu-+v-=a-
ih: ay' ay2

4.58

k fa=-
where pe P. For a constant temperature wall, tw , the applicable boundary

conditions are:

y=o t= tw 4.59

y=oo t=c 4.60

x=o t=c 4.61

The solution of Eq 4.58 in conjunction with Eqs 4.49 and 4.50 subject to

boundary conditions given by Eqs 4.52,4.53 and 4.59 through 4.61 yields the

temperature distribution and the thickness of the thermal boundary layer defined

with the same criterion as the velocity boundary layer. The knowledge of the

temperature distribution in the thermal boundary layer allows us to determine in

conjunction with Eq 4.2 the convection heat transfer coefficient, h.
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4.2.1.2 Conservation Equations - Integral Formulation

One of the important aspects of boundary layer theory is the

determination of the shear forces acting on a body and the convective heat

transfer coefficient if the temperature of the wall is different from that of the free

stream. As was discussed in the previous section, such results can be obtained

from the governing equation for laminar boundary layer flow. We also pointed

out that the solutions of these equations were quite difficult and were not within

the scope of the present course. In this section, we will discuss an alternative

method called "integral method" to analyze the boundary layer and to determine

the shear stress and the convection heat transfer coefficient. The use of this

method simplifies greatly the mathematical manipulations and the results agree

reasonably well with the results of exact solutions.

The integral method of analyzing boundary layers, introduced by Von

Karman (1946), consists of fixing the attention on the overall behaviour of the

layer as far as the conservation of mass, momentum and energy principles are

concerned rather than on the local behaviour of the boundary layer.

In the derivation of the integral boundary laye r equation, the integral

conservation equations given in Chapter 2, Eqs 2.21, 2.22, and 2.33 will be

used. These equations for a fixed control volume (ie., IV =0) and under steady

state flow conditions have the following forms:

Mass conservation:

Momentum conservation (volume forces (I.e. gravity) are neglected:

-L "'pVvdA-Ln. pldA+L"~dA=O

Energy equation (enthalpy form):

Lii.phvdA+ L,,·ij"dA= 0

4.62

4.63

4.64
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where the kinetic and potential energies as well as the viscous dissipation are

neglected; there are also no internal sources. U is the internal energy.

I. Boundary layer mass conservation equation

Consider again the flow on a flat plate illustrated in Fig 4.9. As already

discussed. a boundary layer develops over the plate and its thickness increases

in some manner with increasing distance x. For the analysis. let us select a

control volume (Fig 4.9) bounded by the two planes ab and cd which are

perpendicular to the wall and a distance dx apart. the surface of the plate. and a

parallel plane in the free stream at a distance € from the wall.

U(x)
•

PoteIIIW dow
region b

Limil of the
boundary layer

c

Velocity
boundary layer

+----+-p+ dp dx
dx

-~t=-:1-I---i=~t:.:::::::::....Volocityn.. /--y profiles

-=::x....... dx ____e

Figure 4.9 Control volume for approximate analysis of boundary layer

Assuming that the flow is steady and incompressible. the application of Eq. 4.62

to the control volume yields:

4.65

where mis the mass flow rate entering or leaving the control volume:



m., = f ii.,· utrdA =[f PUdY]
..", 0 x

where, for a unit width of the plate A= Rx I and dA = I . dy:

m", =f iiI<' utrdA =[ r' PUdY].{" Jo x-tdt

A"b = A", = lxl. A Taylor expansion of Eq. 4.67 allows us to write:
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4.66

4.67

4.70

In this expansion only the first two terms are considered, since the terms of

higher order are small and can be neglected compared to the first two.

m., =a,solid wall 4.69

Substituting Eqs. 4.66, 4.68 and 4.69 into Eq. 4.65 we obtain for m,,:

m" = - ;[fo' pua:v1dx

II. Momentum conservation equation

In the derivation of the integral momentum conservation equation we

will assume that there is no pressure variation in the direction perpendicular to

the plate, the viscosity is constant and stress forces acting on all faces except

the face ad are negligible. Applying the momentum conservation equation (Eq.

4.63) to the control volume in Fig. 4.9 and indicating by M the momentum, we

write:

-M -M -M -f lipldA-f fi.p IdA+f ii .~dA=O
ab cd be A"b ab x A", cd x+dx A...,. ad 4.71

Mab = t lia , • p(uTXuT)dA = U: ii~pu'dy1= iia,[f: pu'dy1
M'd =f Ii'd' p(uTXuT)dA =[J' li",pu2dYl

Acd 0 +dx

= n",[fpu2dyL,= n'd[t' pu'dyL..

4.72

4.73
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A Taylor expansion allows us to write:

Moo =iiooU>U2
dY1+ii'd ;[J:0/'dy1dx

Mh, = m,,J ·U(x)=-U(x)i ;[5:0/dy1dx

4.74

4.75

The forces acting on the control volume consist of pressure and viscous

stress forces:

Pressure force acting on surface ab:

4.76

and on surface cd:

4.77

Knowing that

_ dpx dx
Pmix - Px + dx

and substituting it into Eq. 4.76, we obtain:

f -. --( !!L)£Am ned Px+axdy - ned Px + dx dx

Viscous stress forces acting on the surface ad:

f ii .adA = Ii '~dxA
ad

ad ad

since the flow is two dimensional, the stress tensor consists of:

and

4.78

4.79

4.80

(7,. is nothing else but Tw and (7", is negligible.

becomes:

Therefore, Eq. 4.78

4.81
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The stresses acting on surface ab and cd are negligible. Since f is chosen so

that be lies outside of the boundary layer, there is no viscous stress acting on

that face.

Substituting 4.72, 4.74, 4.76, 4.78, and 4.81 into 4.71 we obtain:

Multiplying Eq. 4.82 by rand knowing that:

nab' j =-~ ii'd· j = 1, we obtain:

d f' df' dn-- pu'dy+U(x)- pudy-=f-r =0
dx0 dx0 dx w

or

d f' d i' dn-- pu'dy+U(x)- pudy==f+r
dx0 dx0 dx w

Adding and sUbtracting to the left hand side of Eq. 4.84 the term:

d2
x

) [1'pUdy]

and with some algebra, we obtain for a constant P the following equation:

P4J'(U(x)- u)Jdy - pdU(x)J' udy = f!!P. H
dx0 dx ° dx w

dp
Using Eq. 4.56, dx can be written as

!!E. = u() dU(x)
dx P x dx

fdp
and knowing that the pressure in y-direction is constant, the term dx

is written as:

4.82

4.83

4.84

4.85

4.86

'---'---------------



dp i' dp f' dU(x)f-= -dy=- pU(x)--dy
dx odx 0 dx
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4.87

Combining Eq. 4.85 and 4.87 we obtain:

d f6(X) dU(X)S6(X)(fT;j; 0 (U(x)-u)Jdy+p dx 0 U(x)-u}ty=T.
4.88

In this equation f is set equal to the boundary layer thickness. O(x)since both

integrals on the left hand side of Eq. 4.88 are zero for y > ~x). Eq. 4.88 is the

"integral momentum equation" of a steady, laminar and incompressible

boundary layer. If the velocity distribution is known. then the integrands of the

two integrals are known, and T. may be easily determined:

T. = f1(~u)
y yoO

The resulting expression may then be interpreted as a differential equation for

<5(x), the boundary layer thickness. as a function of x. Eq. 4.88 will be used

later to determine <5(x).

III. Energy conservation equation

The integral energy equation may be obtained in a similar way to that of

the momentum equation. As already discussed, the thermal boundary layer

thickness. 0, (x). is defined as the distance from the heat exctange wall at which

the fluid temperature reaches 99% of its uniform value in the potential flow

region. The thickness of the thermal boundary layer has the same order of

magnitude as the velocity boundary layer. However, the thicknesses of these

two layers are not necessarily equal. Figure 4.10 shows a fluid flowing over a

constant temperature wall Is. The temperature of the potential flow is II. We

assume that II > I,. although the reverse may also be true. Once more the

control volume consists of two planes perpendicular to the wall and a distance

dx apart, the surface of the plate and a plane taken outside of both boundary

layers (Figure 4.10). In the derivation of the integral energy equation, Eq. 4.54

will be used. Note the h in Eq. 4.64 is the enthalpy.
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U(x)..
b

1~c1OC:ity profile

/ Temperature profile ielocity bollDdary

n.. c ~~~i_--.
_... ----­_.---.--

Wall heat
exchange

- /
Thennal boWldary
layer

---
.'. ............

-.- t /

~(x) o,(x)

y

z

J dx
0 7 X,u,t

Figure 4.10 Control volume for integral conservation of energy

In the present derivation, we will assume that the kinetic and potential energies

and viscous dissipation are small compared to the other quantities and thus they

are neglected. Applying the energy conservation equation (Eq. 4.64) to the

control volume seen in Fig. 4.9 and indicating by E the flow energy, we write:

E.. + E", + E bc + f nod .ij"dA = 0
4.89

where:

Ea, =f ii..P(,ul'J1d/ =-[f'PUhdyl
Ad \)

E'd =f n",p(uT)zdA =[fPUhdyl
A<>f 0-tdx

= [J:PUhdy1+ :xu: puhdy1dx

4.90

4.91
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Substituting Eqs. 4.90 through 4.93 into 4.89. we obtain

~[J>UhdY]-~ [J:puhfdY] +kf:loo =0

or

We can also write that

therefore Eq. 4.94 becomes

d r5
,(x) ( \"'. dlI

dx Jo CpfJU If -I?y =kfd
Yy=O

4.92

4.93

4.94

4.95

4.96

Equations 4.88 and 4.96 can also be used in the approximative analysis of

steady turbulent boundary layers by replacing U by u and by using an

appropriate expression to describe turbulent shear stress and heat flux on the

wall.

In this equation. £ is set equal to the thermal boundary layer thickness 8, (xl.

since the integral on the left-hand side of Eq. 4.96 is zero for y > 8, (xl. Eq. 4.96

is the "integral energy equation" of a steady, laminar and incompressible

boundary layer.

4.2.2 Turbulent Boundary Layer

So far we have discussed equations of conservation for a laminar

boundary layer. However. in many applications. the boundary layer is turbulent.

In this section we will discuss the basic features of turbulent boundary layer. In
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laminar flows, we have seen the heat and momentum are transferred across

streamlines only by molecular diffusion and the cross flow of properties is rather

small. In turbulent flow, the mixing mechanism, besides the molecular transport,

consists also macroscopic transport of fluid particles from adjacent layers

enhancing, therefore, the momentum and heat transport or in general, property

transport.

In order to understand the basic features of the turbulent boundary

layers and the governing equations we will assume that these equations for a

flow over a flat plate may be obtained from laminar boundary layer equations

(Eqs. 4.49, 4.50 and 4.58) by replacing U,V,t by;

u;;::.u+u'

v=v+v'
1=1+1'

and taking the time average of these equations, We will further assume that the

velocity of the potential flow is constant. This implies that pressure also

constant. Under these conditions, the conservation equations for a turbulent

boundary layer are:

au av
-+-=0ax ay

-at -at ()21 a - a-
u-+v-=a---u'( --v't'ax ay ay' ax ay

4.97

4,98

4.99

Based on the experiments, in Eqs. 4.98 and 4.99 the terms :x (J2)can be

a t.7J) a_ a '(-\uv _ '( -v
neglected relative to ay and ax u relative to iiy . Consequently, the

momentum and energy equations become:
- - --au-aulaaua-

u-+v- = --f.l- --u'v'ax iiy p ay iiy ay



la a..,-;
=--'r --u vpay , ay

-ai -ai a'i a-
u-+v-=a---v'(ax ay ay' ay

=__I_~q;,_..iv't'
PCp ay f ay
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4.100

4.101

In the above equations the laminar expression for shear and heat flux

au
'r, =Jl-ay

q"=-k at
ay

have been introduced to emphasize the origin of the terms involved. The shear

stress or, and heat flux q;' represent the flux of momentum and energy in the y

direction due to molecular scale activity.

a--,-, a,..-(-uv -v
To understand the significance of ay and ay terms, let us

consider a two dimensional flow in which the mean value of the velocity is

parallel to the x-direction as illustrated in Figure 4.11. Because of the turbulent

nature of the flow, at a given point, the instantaneous velocity of the fluid change

continuously in direction and magnitude as illustrated in Figure 4.12. The

instantaneous velocity components for the present flow are:



u.=u+u;
~=u+~

y

u
_ 1

S V'
S

U'
~2

o

Figure 4.11 Turbulent momentum exchange

)' ,

u, t
v'

I

v; t:Jv[===;;t=:r'---JXt

I
u

Figure 4.12 Instantaneous turbulent velocities

u= u+u

v =v'
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4.1UL

4.103
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As discussed in Section 4.1, an exchange of molecules between the

fluid layers on either side of the plane SS will produce a change in the x­

direction momentum of the fluid because of the existence of the gradient in the

x-direction velocity. This momentum change of shearing force in the fluid which

is directed in the x-direction denoted by 7:, in Eq. 4.10. If turbulent velocity

fluctuations occur both in the x and y directions, which in the case under study,

the Y-direction fluctuations, v' transport fluid lumps which are large in

comparison to molecular transport across the surface SS' as illustrated in Fig.

4.11. For a unit area of SS, the instantaneous rate of mass transport across SS

is:

pv' 4.104

4.105

4.106

This mass transfer is accompanied by a transport of x-direction momentum.

Therefore, the instantaneous rate of transfer in the Y-direction of x -direction

momentum per unit area is given by:

-pv'(j,+ u')

where the minus sign, as will be shown later, takes into account the statistical

correlation between u'and v'. The time average of the x-momentum transfer

gives rise to a turbulent shear stress or Reynolds stress:

7:, = __1_J pv'(u+ u')17:
Li 'fo 4'0

Breaking up Eq. 4.106 into two parts, the time average of the first is:

_1f (pv'}i~ir= 0
~1'o A'ro 4.107

since Ii is a constant and the time average of (PV') is zero. Integrating the

second term of Eq. 4.106 gives:

7: = __1 f (pv')l d7: = -(pv')u'
, Ll7:o ". 4.108

or if P is constant:



f, = -PV'u'

Page 4.36

4.109

where v'u' is time average of the product of u'and v'. We must note that even

though 'if =;; =0, the average of the fluctuation product u'v' is not zero. To

understand the reason for introducing a minus sign in Eq. 4.105, let us consider

Fig. 4.13. From this figure we can see that the fluid lumps which travel upward

(v' > 0) arrive at a layer in the fluid in which the mean

y

....r-_u{""-y_+-'/)'--__~~-y+/

S ----I11'-_u.....:(:;..y:;..)---,.f- S ~
/
,/'-""::':'--:7"'5.f---t- y - i

x,u'-----------------------
4.13 Mixing Ie ngth for momentum transfer

velocity u is larger than the layer from which they come. Assuming that the fluid

particles keep on the average their original velocity u during their migration, they

will tend to slow down other fluid particles after they have reached their

destination and thereby give rise to a negative component u'. Conversely, if

v'is negative, the observed value of u' at the new destination will be positive.

On the average, therefore, a positive v' is associated with a negative u', and

vice versa. The time average of u'v' is therefore not zero but a negative

quantity. The turbulent shear stress defined by Eq. 4.109 is thus positive and

has the same sign as the corresponding laminar shear stress f,. Based on the

above discussion Eq. 4.100 can be written as:
- -

-au -av la( )
uax+vay=pay f,+f,

f=f, +f,

4.110

4.111
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is called total shear stress in turbulent flow.

To relate the turbulent momentum transport to the time-average velocity

gradient du Idy , Prandtl postulated that (Schlichting, 1979) the macroscopic

transport of momentum (also heat) in turbulent flow is similar to that of molecular

transport in laminar flow. To analyze molecular momentum transport (Section

4.1) we have introduced the concept of mean free path, or the average distance

a molecule travels between collisions. Prandtl used the same concept in the

description of turbulent momentum transport and defined a mixing length

(known as Prandtl mixing length), £ which shows the distance travelled by fluid

lumps in a direction normal to the mean flow while maintaining their identity and

physical properties. (e.g., momentum parallel to X-direction). Referring again to

Fig. 4.13, consider a fluid lump located at a distance £ (Prandtl mixing length)

above and below the surface 55. The velocity of the lump at y + £ would be:

i'.(y + £):!i(y)+ £ ~;

while at y- £:

4.113

If a fluid lump moves from layer y- £ to the layer y underthe influence of a

positive v' , its velocity in the new layer will be smaller than the velocity

prevailing there of an amount:

4.114

4.115

Similarly, a lump of fluid which arrives at y from the plane y + £ possesses a

velocity which exceeds that around it, the difference being:

- - au
u{y +£)- u(y)= £ay
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Here v' < O. The velocity differences caused by the transverse motion can be

regarded as the turbulent velocity components at y. Examining Eqs. 4.114 and

4.115, it can be concluded that the u' fluctuation is in the same order of

,du
magnitude of <ry, i.e.,

U,,,,,,dU
- dy

Substituting Eq. 4.116 into 4.109, we obtain

-dU
T, =- fJ"" dY

or calling em =-v', , apparent kinematic viscosity,

dU
T, =pem dy

4.116

4.117

4.118

The total shear stress is than given by (Eq. 4.111)

T=T, +T,(V+em~
4.119

Prandtl has also argued that the v' fluctuation is of the same order as u'. em,

the apparent kinematic viscosity, is not a physical property of the fluid as J1 or v;
it depends on the motion of the fluid and also on many parameters; the most

important is the Reynolds number of the flow. EO is also known to vary from point

to point in the flow field; it vanishes near the solid boundary where the

transverse fluctuations disappear. The ratio of e I V under certain circumstances

can go as high as 400 to 500. Under such cases, the viscous shear (i.e., V) is

negligible in comparison to the turbulent shear (/om) and may be omitted.

The transfer of heat in a turbulent flow can be modelled in a similar way

to that of the momentum transfer. Let us consider a two-dimensional time-mean

temperature distribution shown in Fig 4.14. The fluctuating velocity v'

continuously transports fluid particles and the energy stored in them across the

surface SS.
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4.14 Mixing length for energy transfer in turbulent flow

The instantaneous rate of energy transfer per unit have at any point in the y

direction is:

4.120

where t = t + t'. The time average of the turbulent heat transfer is given by:

1,'= +- i pv'~ + ()ir
uro ~ro 4.121

Carrying out the above integration we obtain:

q','= IX p v'I' 4.122

Substituting Eq. 4.122 into 4.101 we obtain:
- -- at - at I a{ ~

u-+v-=---V(/+q;j
at ay pCp ay

q" = 1,'+ ct:
4.123

4.124

is called total heat flux in turbulent flow.

Using Prandtl's concept of mixing length we can write that:

( ~£dt
- dy 4.125



Combining Eqs. 4.122 and 4.125 we obtain:

- -dt
..."= fle v't' =-c pv'l­
'1, ~ p p dy
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4.126

Here, it is assumed that the transport mechanism of energy and momentum are

similar; therefore, the mixing lengths are equal. The product v'( is positive on

the average because a positive v' is accomplished by a positive (and vice

versa. The minus sign which appears in Eq. 4.17 is the consequence of the

conversion that the heat is taken to be positive in the direction of increasing y;

this also ensures that heat flows in the direction of decreasing temperature, thus

satisfies the second law of thermodynamics.

or

Representing by Eh = v'l Eq. 4.126 becomes

dt
q;t pfJEh dy

The total heat transfer is then given by (4.124)

""k 'Ii!..!q =-~ +CpPEh1iy

dt
q" = -cpp(a+E.)~

where a =k I (X p is the molecular diffusivity of heat. Eh is called the "eddy

diffusivity of heat" or eddy heat conductivity.

4.127

4.128

4.129

4.3 Forced Convection Over a Flat Plate

In the previous section we discussed velocity and thermal boundary

layers with extent of O(x) and ",(x), respectively. The velocity boundary layer is

characterized by the presence of velocity gradients, i.e., shear stresses whereas

the thermal boundary layer is characterized by temperature gradients, I.e., heat

transfer. From an engineering point of view we are mainly interested in

determining wall friction and heat transfer coefficients. In this section, we will

focus our attention on the determination of these coefficients for lamirar and
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turbulent flows. In order to reach rapidly the objectives, the integral momentum

and energy equations (Eqs. 4.88 and 4.96) will be used.

4.3.1 Laminar Boundary Layer

In laminar boundary layers, we discussed that fluid motion is very

orderly and it is possible to identify streamlines along which fluid particles move.

Fluid motion along a streamline has velocity components in x and y direction ( u

and V). The velocity component v normal to the wall, contributes significantly to

momentum and energy transfer through the boundary. Fluid motion normal to

the plate is brought about by the boundary layer growth in the x -direction

(Figure 4.8)

Consider a flat plate of constant temperature placed parallel to the

incident flow as shown in Fig. 4.15. Wewill assume that the potential velocity

u(x) and temperature II are constant. The constant potential velocity,

according Eq. 4.56 implies that longitudinal pressure gradient (in either the

potential region or on the boundary layer) is zero. It will also be assumed that

IF

Velocity boundary
layer

II,

U

•

•

yl
0

1
JC,lI,t

p=const.
I, ""corul.

U=const.

Figure 4.15 Velocity & thermal boundary layers for laminar flow past a flat plate
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all physical properties are independent of temperature. In the following we will

determine the friction and heat transfer coefficient on the plate.

4.8.1.1 Velocity Boundary Layer - Friction Coefficient

For flow past a flat plate in which U(x) =U (a constant) and dp Idx =0, the

integral momentum equation (Eq. 4.88) becomes:

d f'"'Pd;; 0 (U - u)udy = Tw

The above momentum integral equation involves two unknown velocity

component u(x,y)and the boundary layer thickness. If the velocity profile were

known, it is then possible to obtain an expression for the boundary layer

thickness. A typical velocity profile in the boundary layer is sketched in Fig.

4.15. This profile can be represented with a third degree polynomial of y in the

form:

u(x,y) =a(x)+ b(x)y +C(X)y2 + d(X)y3

This polynomial must satisfy the following boundary conditions:

y=o u=O

y=S u=U

y=S ou=o
oy

4.131

4.132

4.133

4.134

y=O
4.135

The last condition is obtained for a constant pressure condition from Eq. 4.50 by

setting the velocities U and v equal to zero at y =0. We will also assume that

the velocity profiles at various x positions are similar; i.e., they have the same

functional dependence on the y coordinate. Using the boundary conditions

4.132 through 4.135, a, b, C and d are determined as:



a=O
3U

b=--
28

c=O
IU

d=--­
283
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4.136

and the following expression is obtained for the velocity profile:

~=~i-~(iJ
SUbstituting Eq. 4.137 into Eq. 4.130, knowing that:

~w =J{~) =~ Jl ~
yoO

and carrying out the integration we obtain:

39 piP dO = ~ Jl U
280 dx28

or

The integration of the above equation yields:

8 = 4.64.J'---~-u-1-x-+-c-ons-t.

4.137

4.138

4.139

4.140

4.141

4.142

Referring to Fig. 4.15 we see that at x =0, 8 =0, therefore the constant is zero

and the variation of the velocity boundary layer thickness is given by:

{jix
8=4.64~p U

or

8 4.64 4.64

~= .JP~m =Re~2
4.143

R,= PUx

where Jl is the Reynolds number based on x, distance from the leading

edge.

The exact solution of the boundary layer equations (Eqs. 4.49 and 4.50)

yields:
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li 5.0

4.144

Therefore, Eq. 4.28 yields a value for li(x) 8% less than that of the exact

analysis. Since most of the experimental measurements are only accurate to

within 10%, the results of the approximate analysis are satisfactory in practice.

Combining Eqs. 4.138 and 4.143, we obtain for wall shear stress:

pU2
Tw =0.323r,::=

.~Rex

Wall friction coefficient is defined as :

T
c~ =_\_w_

-pU'
2

or with Eq. 4.145

c _0.646
~-~

4.145

4.146

4.147

This is the local friction coefficient. The alerage friction coefficient is given by:

or with Eq. 4.147

c = 1.292
x .JRex

4.3.1.2 Thermal Boundary Layer - Heat Transfer coefficient

4.148

4.149

Now, we will focus our attention to the thermal boundary layer and

determine the heat transfer coefficient. Consider again the flow on a flat plate

illustrated in Fig. 4.15. The temperature of the plate is kept at tw starting from

the leading edge and the temperature of the potential flow is tp and is constant.

Under the above conditions, a thermal boundary layer starts forming at the

leading edge of the plate. In order to determine the heat transfer coefficient, the
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thickness of the thermal boundary layer, 0, (x), should be known. To do so, we

will use the integral energy equation given by Eq. 4.96 and rewritten here for

convenience:

4.96

The above integral equation involves two unknowns: the temperature l(x,y) and

the thermal boundary layer thickness. If the temperature profile were known it

would then be possible to obtain an expression for the thermal boundary layer.

The velocity profile has already been determined and given by Eq. 4.137. A

typical temperature profile is given in Fig. 4.15. The profile, in a way similar to

that of the velocity profile, can be represented with a third degree polynomial of

y in the form:

I(X, y)= a(x) +b(x)y +c(x)y2 + d(x )y3

with boundary conditions:

y =0 t =t w

y=o, I = If

y=o,
al
-=0
ay

a21
y=O -=uay 2

4.150

4.151

4.152

4.153

4.154

The last condition is obtained from Eq. 4.58 by setting the velocities u and v

equal to zero at y = O. Under these conditions the temperature distributions is

given by:

Introducing a new temperature defined as:

0= I-Iw

Eqs. 4.96 and 4.155 can be written as:

4.155

4.156
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4.157

and

where 9. = II - I.

Substituting in Eq. 4.157 u and 9 by Eq. 4.137 and 4.158. we obtain:

9 U~t[l- ~z+.-!(z)3I~1_.!(I)3]dy =~a~
• dx 0 2 0, 2 0, 2 0 2 0 2 0,

4.158

4.159

4.161

where a =kl / pc p

Defining ~ as the ratio of the thermal boundary layer thickness to the velocity

boundary layer thickness 0, /0. introducing this new parameter into Eq. 4.159,

performing the necessary algebraic manipulations and carrying out the

integration we obtain:

4.160

A simplification can be introduced at this point if we accept the fact that ~. the

ratio of boundary layer thickness, will be near 1 or better less than unity. We will

later see that this is true for Prandtl (Pr) numbers equal or greater than 1. This

situation is met for a great number of fluids. With the above assumption the

second term in the bracket in Eq. 4.160 can be neglected compared to the first

one and this equation becomes:

3 d 3 a 1__~2= _

20 dx 2~oU

or

4.162

Taking into account Eq. 4.140:

4.140
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and Eq. 4.142

t5 =4.64~E. x
pU

and introducing them into Eq. 4.162, we obtain:

14l.{l(~3 +4X~2~) =1
13pa dx

4.142

4.163

4.165

1!:.- ~
The ratio pa or a is a non-dimensional quantity frequently used in heat

transfer calculations; it is called the Prandtl number and has the following form:

Pr =H...!. =fJ. p: p =cpfJ.

pa p k j k j 4.164

With the above definition, Eq. 4.163 becomes;

(~3 +4X~2 d~) = 13..!..
dx 14 Pr

or

4.166

Making a change of variable as :

Eq 3.166 is written as:

4dy 131
y+-x-=--

3 dx 14 Pr 4.167

The homogeneous and particular solutions of the above equations are:

Homogeneous y=cx' wilh n=-3/4 4.168

131
y=--

Particular 14 Pr 4.169

The general solution is then given by:

13 1 ~l
y=--+Cx 4

14Pr 4.170

or
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4.171

1
.; = 1.026 Pr 1/3

Since the plate is heated starting from the leading edge, the constant C must be

zero to avoid an indeterminate solution at the leading edge, therefore:

.;' =13 ....!.-
14 Pr 4.172

or

4.173

In the forgoing analysis the assumption was made that';:51. This assumption,

according Eq. 4.173 is satisfactory for fluids having Prandtl numbers greater

than about 0.7. For a Prandtl number equal to 0.7, .; is about 0.91 which is

close enough to 1 and the approximations we made above is still acceptable.

Fortunately, most gases and liquids have Prandt numbers higher than 0.7.

Liquid metals constitute an exception: their Prandtl numbers are in the order of

0.01. Consequently the above analysis cannot be applied to liquid metals.

Returning now to our analysis, we know that the local heat transfer

coefficient was given by Eq. 4.2 which, for the present case, is written as:

where

(afJ) _~ fJ w _ ~ fJw

ay y;O - 2 0, - 2 c:
SUbstituting Eq. 4.176 in Eq. 4.175, we obtain:

4.174

4.175

4.176
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4.177

4.179

4.178

This equation may be made non<limensional by multiplying both sides by x /k f:

hxx =0.332e.JPi.JpUx
k f Jl

Combining the above equation with Eqs. 4.173 and 4.142 we obtain:

hx =0.332kf~~':

or NUx = 0.332;JP;~Rex 4.180

where NUx is the Nusselt number, defined as:

N hxxu.=­kf 4.181

4.182

Eq. 4.180 express the local value of the heat transfer coefficient in terms of the

distance from the leading edge of the plate, potential flow velocity and physical

properties of the fluid. The average heat transfer coefficient can be obtained by

integrating over the length of the plate:

yhdx
h f

o

L~ =2hX"L

hL
NIL =-=2Nu_

-FL k x-L

f 4.183

or

- hL
Nu" =T=O.664Ret'Pr IB

f 4.184

where 4.185

The above analysis was based on the assumption that the fluid properties were

constant throughout the flow. If there is a substantial difference between the

wall and free stream temperature, the fluid properties should be evaluated at the

mean film temperature defined as:

--- -----------------
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Iw + If
1=-­
m 2 4.186

It should be pointed out that the expressions given by Eqs. 4.180 and 4.185

apply to a constant temperature and when:

Pr ~O.7

Rex :s; 5x 10'

However, in many practical problems the surface heat flux is constant and the

objective is to find the distribution of the plate surface temperature for given fluid

flow conditions. For the constant heat flow case it was shown that the local

Nusselt number is given by:

Nu,. =O.453Re ~2 PrU3
4.187

4.3.2 Turbulent Boundary Layer

--~~-
!II.ilrnlW!~!~

.I~«
.~ ......... -...---­
~-..... ..-..--­-... ..... -.. .....
eiliiiWdii!!X,II

A turbulent boundary layer is ctBracterized by velocity fluctuations.

These fluctuations enhance considerably the momentum and energy transfer,

i.e., increase surface friction as well as convection heat transfer. The turbulent

boundary layer doesn't start developing with the leading edge of the plate. The

development of the velocity boundary on a flat plate is sketched in Fig 4.16.

The boundary layer is initially laminar. At some distance from the leading edge,

the laminar flow in the boundary layer becomes unstable and a gradual

transition to turbulent flow occurs. The length over which this transition takes

U

Figure 4.16 Development of laminar & turbulent boundary layers on a flat plate
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place is called" the transition zone". In the fully turbulent region, flow conditions

are characterized by a highly random, three-dimensional motion of fluid lumps.

The transition to turbulence is accompanied by an increase of the boundary

layer thickness, wall shear stress and the convection heat transfer coefficient.

In the turbulent boundary layer three different regions are observed

(Fig. 4.16):

1. A laminar sub-layer in which the diffusion dominates the property transport,

and the velocity and temperature profiles are nearly linear.

2. A buffer zone where the molecular diffusion and turbulent mixing are

comparable to property transport.

3. A turbulent zone in which the property transport is dominated by turbulent

mixing.

An important point in engineering applications is the estimation of the

transition location from laminar to turbulent boundary layer. This location,

denoted by x" is tied to a dimensionless grouping of parameters called the

Reynolds number:

Re = PUx

x f.J. 4.188

where the characteristic length x is the distance from the leading edge. The

critical Reynolds number is the value of Rex for which the transition to turbulent

boundary layer begins. For a flow over a flat plate the critical Reynolds number,

depending on the roughness of the surface and the turbulence level of the free

steam, varies between 10' to 3xlO'. It is usually recommended to use a value of

Rex =5xlO' for the transition point from laminar to turbulent flow. From Fig.

4.16, it is obvious that the transition zone for a certain length and a single point

of transition is an approximation. However, for most engineering applications

this approximation is acceptable. We should also emphasize that the flow in the

transition zone is quite complex and our knowledge of it is very limited.
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4.3.2.1 Velocity Boundary Layer - Friction Coefficient

Analytical treatment of a turbulent boundary layer is very complex. This

is due to the fact that the apparent kinematic viscosity Em, as already pointed out

in Section 4.2.2, is not a properly of the fluid but depends on the motion of the

fluid itself, the boundary conditions, etc. Here, we will use a simple approach to

determine the thickness of the turbulent boundary layer.

The general characteristics of a turbulent boundary layer are similar to

those of a laminar boundary layer: the time-average flow velocity varies rapidly

from zero at the wall to the uniform value of the potential core. Due to the

transverse turbulent fluctuations, the velocity distribution is much more curved

near the wall than in a laminar flow case. However, the same distribution at the

outer edge of the turbulent layer is more uniform than that corresponding to a

laminar flow.

A number of experimental investigations have shown that the velocity in

a turbulent boundary layer may be adequately described by a one-seventh

power law:

4.189

where Ii is the boundary layer thickness and U is the time average ofturbulent

velocity. For the sake of simplicity the bar notation to show the time average is

dropped with understanding that all turbulent velocities referred to are time­

averaged velocities. This power law represents well the experimental velocity

profiles for local Reynolds numbers in the range 5 x 10 5 < Re, < 107
• Although

Eq. 4.189 describes well the velocity distribution in the turbulent layer, it is not

valid at the surface. This can be seen when we try to evaluate the shear stress

on the wall which has the following form:

4.190

.. _-_._- . - -------
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According to Eq. 4.189, the velocity gradient anywhere in the boundary is:

du 1 U
dy 7 8'17 y617

4.191

4.192

4.130

This relation leads to an infinite value of the stress at the wall. This is not

physically possible. In our previous discussion, we have pointed out that the

turbulence dies out in the vicinity of the wall and the boundary layer behaves in

a laminar fashion. In this region, the velocity distribution is assumed to be

linear. Based on the above discussion, the velocity distribution in the turbulent

region, including the buffer zone, will follow one-seventh power law whereas in

the laminar sub-layer will be linear. This linear variation will be selected so that

the slope at y = 0 yields the wall stress obtained experimentally by Blasius

(1913) for turbulent flows on a smooth plate:

( )

114

'l'w =O.0228pU' ~O

where V is the kinematic viscosity. The velocity distribution in the laminar sub­

layer will join to that in the fUlly turbulent region at a distance Os from the wall.

This distance is commonly called the thickness of the laminar sub-layer. The

resulting velocity profile is sketched in Fig. 4.17.

To determine the turbulent boundary layer thickness, we will employ Eq.

4.130, repeated here for convenience (u = constant, dp I dx = 0):

d f5 (X)IT;i;; 0 (U - u)udy ='l'w

Although the above equation is derived for a laminar flow, It may also be used

for a turbulent flow as long as the velocities used are time average velocities

and as long as wall shear term, 'l'w' is adequately represented for turbulent flow,

for example with Eq. 4.192 for a turbulent flow on a plate. For the purposes of

integral analysis, the momentum integral in Eq 4.130 can be evaluated by using

the power law given by Eq. 4.189. This is justified by the fact that the laminar

sub-layer is very thin. For the wall shear stress, the Blasius correlation given by

--- -- - --------- -
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y
u

velocity bcu"""'Y
layer

x,v
Figure 4.17 Velocity profiles in the turbulent zone and laminar sub-layer

Eq. 4.192 will be used. Consequently, the substitution of Eqs. 4.189 and 4.192

into 4.130 yields:

d ()1I7[ ()In] ( V )114
pU2dxf: i 1- ~ =0.0228pU2 Uo

Integration of the above equation yields:

7 do o( V )114
72 dx =0.022"1...uo

or

j )114
OJ 14 do= 0.23\~ dx

This equation can be easily integrated to obtain:

j V)11S
0= 0.37\ U X4'5 + constant

4.193

4.194

4.195

The constant may be evaluated for two physical situations:

1. The boundary layer is fully turbulent from the leading edge of the plate. In

this case boundary condition will be:

x =0 0=0 4.196

-------- - -------
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2. The bOlndary layer follows a laminar growth pattern up to R, =5 X 10' and a

turbulent growth thereafter. In this case the boundary condition will be:

o=o,atx=x =5x IO,L
cr pu 4.197

0, can be obtained from Eq. 4.144 repeated here for convenience:

o 4.64
;= Rel/2

x 4.198

as:

4.200

{ )-112
0, = 4.64x, \5 x 10'

4.199

For our application, we will retain the first option. Consequently, the constant in

Eq. 4.195 is zero and the thickness of the boundary layer is given by:

~ = 0.376 =0376Re-I/,

X (p~xr' x

This assumption is not true in practice. However, experiments show that the

predictions of Eq. 4.200 agree well IMth data. When Eq. 4.144 and 4.200 are

compared we observe that the thickness of the turbulent boundary layer

increases faster than that of laminar boundary layer. The equations for

boundary layer thickness (i.e., Eqs. 4.144 and 4.200) apply only to the regions

of fully laminar or fully turbulent boundary layers. As can be seen from Fig. 4.16

the transition from laminar flow to turbulent flow does not occur at a definite

point, but rather occurs over a finite length of the plate. The transition zone is a

region of highly irregular motion and the knowledge of the flow in this region is

quite limited. For most engineering applications, it is customary to assume that

the transition from laminar boundary to turbulent boundary occurs suddenly

when the local Rex number is equal to 5 x 10'. At the transition point the

thickness of the boundary layers will be different with the turbulent boundary

layer thicker than the laminar boundary layer; i.e., a discontinuity exists in the

thickness.
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Let us now focus our attertion to the laminar sub-layer, illustrated in

Fig. 4.17 and determine its thickness, 6s , and the velocity of the fluid at the

juncture between the laminar sub-layer and the fUlly turbulent zone denoted by

Us.

Since the velocity varies linearly in the laminar sub-layer, the shear

stress in this layer is given by

du u
1:=J1- =J1­

dy y 4.201

Combining this expression with the wall shear stress correlation established by

Blasius for a turbulent boundary, we obtain for the variation of the velocity the

following expression:

u' ( )114
u= 0.0228PJi P~6 y

when y =6s , u= us' the above expression becomes:

( )

314

§.. 1 J1 ~

6 0.0228 pU6 U

The velocity profile in the turbulent region was given by Eq. 4.189 which, for

y =6s and u =us, can be written as:

The combination of Eqs. 4.203 ans 4.204 yields:

4.202

4.203

4.204

4.205

6, the thickness of the turbulent boundary layer is given by Eq. 4.200, therefore

Eq. 4.205 becomes:

4.206

Combining Eqs. 4.204 and 4.206 we obtain:



0, 194
8= Re~7

The wall shear stress can also be written as:

Using Eqs. 4.200, 4.206 and 4.207, the above equation becomes:

2 0.0296
or. =pU Reo,

x
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4.207

4.208

4.209

4.210

1 7

Dividing both sides of this equation by '2 pU-and using the definition of the wall

friction coefficient, c... , given by Eq. 4.146, we obtain:

C _~_0.0592
~ - 1 - Re02

-pU' ,
2

This is the local wall friction coefficient.

4.3.2.2 Heat Transfer in the Turbulent Boundary Layer

The concepts regarding turbulent boundary layers discussed in

Sections 4.2.2 and 4.3.2.1 will now be employed for the analysis of heat transfer

as flat plates in turbulent flow. We will first discuss the Reynolds analogy for

momentum and heat transfer. Subsequently we will discuss a more refined

analogy introduced by Prandtl.

Reynolds Analogy for Laminar boundary layer

In a two-dimensional laminar boundary layer, the shear stress at a

plane located at y is given by:

du
or =J.l­

dy

The heat flux across the some plane is:

"--k dt
q - f dy

4.211

4.212



Dividing Eqs. 4.211 and 4.212 side by side, we obtain

q" kf dt
T=-ji du

This expression can also be written as:

1:..=_!Lc dl
'l" Jlc p P du
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4.213

4.214

jlcp / k p is the Prandtl number. Reynolds assumes that Pr =j, therefore Eq.

4.214 becomes:

q" dl
-:-c ­

'l" p du 4.215

Assuming that q" / 'l" ratio is constant and equal to the same ratio on the wall,

i.e.,

q" q~
-=-

'l" 'l"w 4.216

Eq. 4.215 can be easily integrated from the wall conditions I = I., u = c , to the

potential flow conditions I =If' u =U ,

on

" uqwJ du=-c J'I dl
". 0 P I'w •

d' 'l" c
~-~
I -I - U
w f

4.217

4.218

The left hand side of Eq. 4.218 is nothing else but convection heat transfer, h.

Therefore we write:

'fwc p

h=lj

Using the definition of wall friction coefficient

'l"w
c.. =-j--

-pU'
2

Eq. 4.219 becomes
j

h=-pUc c2 P f

4.219

4.146

4.220
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Multiplying both sides of the above expressing x, knowing that for

Pr =1, cp =k! / fJ., and using the definition of local Reynolds number

Re = PUx

x fJ.

and local Nusselt number:

Eq. 4.147 is written as:

1
Nu =-c Re

x 2 '1' x

This is the dimensionless statement of Reynolds' analogy for laminar flow.

Observe that heat transfer coefficient is related to the wall friction factor.

4.221

In Section 4.3.1.1 it was shown that for a laminar flow on a flat plate, the

wall friction coefficient was given by (Eq. 4.147)

0.646
c =--
.. Re~2 4.147

For this case Reynolds analogy (Eq. 4.221) gives:

Nu = 0.332Re1l2
x x 4.222

The result obtained from the integral momentum and energy analysis was (Eq.

4.180)

Nu =0.332Rel12 Prwx x 4.180

For Pr = I, this result is the same as the one obtained by Reynolds' analogy.

Therefore, there is an agreement between Eqs. 4.180 and 4.222. It appears

that the effect of the Prandtl number differing from unity can be expressed by a

factor equal to Pr"3. The latter fact is sometimes applied in other cases when

exact solution to the thenmal boundary layer cannot be obtained, and

experimental skim friction measurements are used to predict heat transfer

coefficients.

Reynolds' analogy for turbulent boundary layer

----- --------
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In Section 4.2.2, we have seen that the total shear stress and heat flux

in a turbulent boundary layer were given by Eqs. 4.119 and 4.129, respectively.

These equations are repeated here for convenience:

7:=7:, +7:,(V+em~

4.129

where V: is the kinematic viscosity related to molecular momentum exchange

(molecular diffusivity of momentum)

em: is the apparent kinematic viscosity related to turbulent momentum

exchange (eddy diffusivity of momentum)

a : is the molecular diffusivity of heat

eH : is the eddy diffusivity of heat

Reynolds assumed that the entire flow in the boundary layer was turbulent. This

means that he neglected the existence of the viscous sub-layer and the buffer

zone. Under these conditions the molecular diffusivities of momentum (V) and

heat ( a) can be neglected in comparison with turbulent diffusivities (em and eH ),

i.e.,

V «em and a« e4

Moreover, Reynolds assumed that:

Em=eH=e

Under these conditions, Eqs. 4.119 and 4.129 become:

du
7:=7:, =pe

dy

dt
q" =q"=-pc e-

, P dy

Dividing Eqs. 4.225 and 4.224 side by side, we obtain

t/.' dt...1..=-c ­
7:, P du

4.223

4.224

4.225

Comparing Eq. 4.226 with Eq. 4.215, we observe that these equations are

similar provided that in laminar boundary layer the Prandtl number is equal to 1.
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Comparing Eq. 4.226 with Eq. 4.215. we observe that these equations are

similar provided that in laminar boundary layer the Prandtl number is equal to 1.

Prandtl's Modification to Reynolds' Analogy

Prandtl assumed that the turbulent boundary layer consisted of two

layers:

1. A viscous layer where the molecular diffusivities are dominant. that is:

V» Em and a» EH 4.227

2. A turbulent zone where the turbulent diffusivities are dominant, that is:

4.228

He also assumed that Em = EH = E. This approach implies that the Prandtl

number is not necessarily equal to 1.

The variation of velocity and temperature in this two-region boundary

layer is illustrated in Fig. 4.18. In the laminar sub-layer. the velocity and the

temperature vary linearly: from zero to Us for velocity and from Iw to Is. for

temperature. In the turbulent region the variation of the velocity. as discussed in

Section 4.3.2.1 is given by one-seventh power law (Eq. 4.189) and varies from

Us to U • \elocity of the potential flow. whereas the temperature varies from

Is to Ip • temperature of the potential flow.

Applying Eq. 4.213 to the laminar sub-layer we write:

q" kf-du=--dl
T Jl. 4.229

Integrating this equation between 0 and Us and between Iwand lSI assuming that

" "'L qw
T ratio is consta nt and equal to Tw we obtain:

or

" u k t'b.J 'du= _....Lf.. dl
f w 0 J.1 t '"

-- - - - - -- - --

4.230
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Figure 4.18 Turbulent boundary layer consisting of two layers: Prandtl approach

if..'="t kf 2.(1 _ I )
\Ii \Ii II Us \:. ~

,. 4.231

Applying now Eq. 4.226 to the turbulent region of the boundary layer we write:

cf.'
....!..du=-c dl
"t, p 4.232

Integrating this equation between 't and U , and between I. and If. (see Fig.

4.18) and assuming again q;'I"t, ratio is constant and equal to q~ / "t., we obtain:

" vq'f du=-c f'l dl
'fw Us P t.rj

or

"fVq", du =-c f'l dl
1'w Us P ''1

The elimination of I. , between Equ. 4.231 and 4.234 yields

a' (IlU. u-u)I. - If =.:ll< =-"- + .:::....-=
"t. kf c p

Knowing that:

4.233

4.234

4.235
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4.1

Eq. 4.235 is written as:

1

fwC p

h= U, u
1+=(Pr-I)

U

4.236

4.237

The above equation is the statement of PrandU's modification of Reynolds'

analogy and may be written in a dimensionless form by multiplying both sides

x IkI and by rearranging the numerator:

.!:.~lIce Uxp

2!.pU2 kl 11
Nu =----'2~::- _

x u
1+=U (Pr-I)

4.238

Recognizing that:

Eq 4.238 becomes:

1-c ·Pr·Re2 ~Nu,,= ....-~-­
u

1+ -'-'(Pr-l)
U 4.239

u,
For a turbulent flow c~ and U are given with Eqs. 4.206 and 4.210, repeated

here for convenience:

u, 2.12
-=--
U ReO.!

4.206

C~
0.0592
Re~·2 4.207



Substituting these relationships into Eq. 4.239, we obtain:

00292 Re08 PrN -' •
u, - 1+ 2.12 Re;"I(Pr_l)
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4.240

Nu, =0.0292 Reo, Pr"

This relation is found to give adequate results for turbulent heat transfer

coefficients in spite of many simplifications. The fluid properties in Eq. 4.208

should be evaluated at the mean temperature and the Prandtl number should

not be too different from unity. The major difficulty of Eq. 4.240 is its integration

to obtain the average Nusselt number. It is observed that for Pr numbers not

different from unity, which is the case for many gases and liquids, the

denominator of Eq. 4.240 is nearly constant. Therefore, for such cases it is

recommended that following expression be used in the estimation of the heat

transfer coefficient:

4.241

Again the mean film temperature (Eq 4.186) should be used for all properties.

Eq. 4.241 can be integrated along the plate to obtain an average Nusselt

number. For a plate length L, this average is given by

Ii, ="!'[0.0292 PrI/3(PU)O" k IL_I-dx]
L J1 jOX02

or

4.242

This latter relation assumes that the boundary layer is turbulent starting from the

leading edge of the plate. As discussed in Section 4.3.2 and illustrated in Fig.

4.16, starting from the leading edge over certain portion of the plate the

boundary layer is laminar. The transition to turbulent flow occurs at a distance

X,. This point is specified by a critical Reynolds number; usually a value of

5 x 10' is used. Under these conditions, a better average film coefficient and

average Nusselt number would be given by the combination of Eqs. 4.180 and

4.241:
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ii, =1. [0.332 PrI13 k(PU)1/2 rx
, _1 dx

L f Jl Jo X ll2

-10.0292 Prl/3 k (pU)O"fL _1_ dx ]
f 11 x ... X O.2

4.243

In the above averaging, it is assumed that the laminar to turbulent

transition occurs instantaneously. The following expression is obtained for the

average Nusselt number:

NUr. =0.036 PrIl3[Re~'_ Re~:+ 18.44 Re~,'] 4.244

where Re"is the critical Reynolds number. If Re,,=500,OOO, the above relation

becomes:

4.245

4.4 Forced Convection in Ducts

Heating and cooling of fluid flowing inside a duct constitutes one of the

most frequently encountered engineering problems. The design and analysis of

heat exchanges, boilers, economizers, super heater and nuclear reactors

depend largely on the heat exchange process between the fluid and the wall of

the tubes.

The flow inside a duct can be laminar or turbulent. The turbulent flow

inside ducts is the most widely encountered type in various industrial

applications. Laminar flow inside ducts is mainly encountered in compact heat

exchanges, in the heating and cooling of heavy fluids such as oils, etc.

When a fluid with uniform velocity enters a straight pipe a velocity

boundary layer (also a thermal boundary layer, if the tube is heated) starts

developing along the surface of the pipe as illustrated in Fig. 4.19.

--- -_._---
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4.19 Flow in the entrance region of a pipe

Near the entrance of the pipe, the boundary layer develops in a way similar to

that on a flat plate. Because of the presence of an opposite wall on which a

boundary layer also develops, at a given point along the tube, both boundary

layers will touch each other and fill the entire tube. The length of the tube m.er

which the viscous layers have grown together and filled the tube cross section is

called the starting or entrance length. The flow beyond this region is termed

"fully developed flow". In the entrance region the flow consist of a potential core

region near the centre of the tube where the velocity is uniform and a boundary

region near the wall of the tube where the velocity varies from the potential core

value to zero at the wall. As we proceed along the pipe in the entrance region,

the portion of the tube occupied by the boundary layer, where the flow velocity

varies, increases and the position occupied by the potential core decreases.

Consequently, in order to satisfy the principle of mass conservation, i.e., a

constant average velocity, the velocity of the potential core shouts increase.

This increase is illustrated in Fig. 4.19.

The transition from laminar to turbulent flow is likely to occur in the

entrance length. If the boundary layer is laminar until it fills the tube, the flow in

the fully developed region will be laminar with a parabolic velocity profile.

However, if the transition from laminar to turbulent flow occurs in the entrance
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region, the flow in the fully developed region will be turbulent with somewhat

blunter velocity profile as illustrated in Fig. 4.20. In a tube, the Reynolds number

based on the diameter:

Re = PUmD
D J1

is used as a criterion for the transition from laminar to turbulent flow.

"R ............L .. u_
.... ..... ~...... , ..... , .. _,.

'"

/ U.. 1/
I '"

Figure 4.20 Velocity profile in turbulent pipe flow

4.246

4.248

Here D is the pipe diameter and Um is the average velocity of the flow in the

pipe. for:

ReD> 2300

the flow is usually observed to be turbulent. This value should not be treated as

a precise value. since a range of Reynolds numbers for transition has been

experimentally observed depending on the pipe roughness and the smoothness

of the flow. The generally accepted range for transition is:

2000 < Re D< 4000 4.247

For laminar flow, the length of the entrance region maybe obtained from an

expression of the flow (Langhaar. 1942)

~ =0.0575 ReD

---------------_._...
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There is no satisfactory expression for the entry length in turbulent flow, it is

known that this length is practically independent of Reynolds number and, as a

first approximation it can be assured that (Kay and Crawford, 1980.)

IOS Ls S60
D 4.249

Usually it is assumed that the turbulent flow is fUlly developed for Ls /D > 10.

4.4.1 Laminar Flow

In this section, the velocity distribution, frictional pressure loses and the

convection heat transfer coefficient will be discussed for the fully developed

region. The discussion of the entrance region is beyond the scope of this

lecture.

4.4.1.1 Velocity Distribution and Friction Factor in Laminar Flow

The form of the velocity can be easily determined for a steady state

laminar flow of an incompressible, constant property flow in the fully developed

region of a circular tube. In the fully developed region, velocity profile doe not

change along the tube. It depends only on the radius, i.e., U= u(r).

To proceed with the analysis, let us select a fix control volume of radius

r and length dx sketched in Fig. 4.21. The application of the macroscopic

momentum balance (Eq. 2.22) to the above control volume yields (see Eq. 4.63)

-t;,· pVvdA -Lii. /idA+L;, ·adA=o
4.63

Multiplying this equation by r and knowing that the velocity profile does not

change in the x-direction (ie·.rl ii· pvVdA =0), we obtain:

-7· t ii· pldA +7 {n.adA =0
4.250
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I,
dx

R
r-_ -

p+fIpdx X
dx

,I

4.251

Figure 4.21 Control volume in a laminar, fully developed flow in a

circular tube

which is simply a balance equation between of the forces acting on the control

volume. Le., balance between shear and pressure forces in the flow. The

pressure and viscous stress terms in Eq 4.250 can be written as:

-f-= (dn'L dp
-i· A n' pl' dA=-p/fr' + Px +"d;;dxrr2 =rcr'- dx dx

-7- f ii· ~dA =-21!'rdxT
A '

SUbstituting Eqs. 4.251 and 4.252 into 4.250 we obtain:

r dp
--=-T
2 dx '

We know that:

du
T, =-/1 dy

and this equation with y = R- r (or dy = -dr) becomes:

du
T, = -/1 dr

Substitution of Eq. 4.254 into Eq. 4.253 yields:

du= ~(:}dr

Since the axial pressure gradient is independent of r, Eq. 4.255 may be

integrated to obtain:

4.252

4.253

4.254

4.255



u= 4~(:)r'+C

The constant C can be easily determined by setting:

r=R u=O
Therefore, the constant becomes:

C =__I (1E)R2
4/1 dx

It follows that the velocity profile oHhe fully developed flow is given by:

u=_1 (dP)R'(I_-'c)=U (I_-'c")
4/1 dx R' = R'
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4.256

4.257

4.258

4.259

Hence the fully developed profile is parabolic. Note that the pressure gradient

must always be negative.

The average velocity is given by:

_J: 2Jrrpudr
Um - JrR2

Substituting u in the above equation by Eq. 4.259 and carrying out the

integration, we obtain:

Substituting this result into Eq. 4.259, the velocity profile is then

l(r)=2Um(l- ~:)

U m can be calculated from the knowledge of the volume flow rate:

Q
U =­

m A

4.260

4.261

4.262

4.263

where Q is the volume flow rate in m3
/ S and A is the flow section in 11f. Eq.

4.262 can be used to determine frictional pressure gradient.
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Eq. 4.253 can also be written for a control volume bounded by the tube

wall and two planes perpendicular to the axis and a distance dx apart as:

B.EE =-T
2 dx R 4.264

or as

where D is the diameter of the tube. TR is given by:

T =_~dU)
R dr

r~R

1
Dividing both sides of Eq. 4.265 by 2pU~ and calling:

!-~- 1
-pU'2 m

we write

4.265

4.266

4.268

where ! is the friction factor. Since the velocity distribution is known TR can be

easily evaluated from Eq. 4.266 as:

8 Um
T = fI-

R r- D 4.269

The substitution of Eq. 4.269 into Eq. 4.267

64Jl 64
!=-=­

pUmD ReD

where

pipe.

Re (= pUm
D

)
D Jl is the Reynolds number based on the diameter of the

4.270

Equation 2.268 in conjunction with Eq. 2.270 allows us to evaluate the

frictional gradient component of the total pressure gradient in a laminar flow.

The pressure drop in a tube of length L is obtained by integrating Eq. 2.268:



I
P, JL 1 U 2 1 L

/',p=- dp= f-~dx=f-pU2-
II 0 2 D 2 mD

4.4.1.2 Bulk Temperature
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4.271

For flow over a flat plate, the convection heat transfer coefficient was

defined as:

4.272

4.273

where If is the temperature of the potential stream. However, in a tube flow

there is no easily discemible free-stream condition. Even the centerline

temperature (Ie) cannot be easily expressed in terms of inlet flow parameter and

wall heat flux. Consequently, for fully developed pipe flow it is customary to

define a so-called "bulk temperature" in the following form:

i
R
pc ltil.11Tdr

t _ 0 P

b- JR puc 21fTdr
o p

For incompressible flow with constart cp, this definition is written as:

rpCptu2rrrdr
I, ==------'---

mCp

4.274

The numerator of Eq. 4.273 or 4.274 represents the total energy flow through

the tube, and the denominator represents the product of mass flow and specific

heat integrated over the flow area. The bulk temperature is thus representative

of the total energy of the flow at a particular location along the tube.

Consequently, as can be seen from Eq. 4.274, the multiplication of the bulk

temperature with the mass flow rate and the specific heat given the rate at which

thermal energy is transported with the fluid as it moves along the tube.

With the above definition of the "bulk temperature", the local heat

transfer coefficient is than defined as:



q"
h

~w -I,)

where lw is the pipe wall temperature.
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4.275

In practice, in a heated tube an energy balance may be used to

determine the bulk temperature and its variation along the tube. Consider the

tube flow seen in Fig. 4.22. The flow rate of the fluid and its inlet temperature

(or enthalpy) to the tube are m, respectively. Convection heat transfer occurs at

the inner surface.

------1--1-q-;-+-----

.......................-.- - , , , .

I,

t---dx---tIx
o x

h

x+dx
h+ dh dx

dx

Figure 4.22 Control volumes for integral flow in a tube

Usually, fluid kinetic and potential energies, viscous dissipation and axial heat

conduction are negligible. Steady state conditions prevail. Under these

conditions the variation of the bulk temperature along the tube will be

determined for "constant surface heat flux" and for "constant surface

temperature".

1. Constant surface heat flux

Representing by q~ constant wall heat flux and applying the energy

conservation equation (Eq. 4.64) to the control volume limited by the tube wall
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and by two planes perpendicular to the axis and a distance dx apart (Fig. 4.22),

we can write:

4.276

or

Integration of this equation between the inlet of the tube and a given axial

position (x) yields:

h(x)-h, =~ q".l:
m

Enthalpy difference h- h, can be written in terms of temperature as:

h(x)-h, =~ p[lb(X)- d
Combining Eqs. 4.278 and 4.279, we obtain the variation of the bulk

temperature along the tube as:

1fD •
I,(x) =1, +-.-qwx

m

2. Constant surface temperature

Results for the axial distribution of the mean temperature are quite

different when the temperature of wall is maintained at a constant value Iw •

Under this condition the local wall heat flux is given by:

q~(x)= holl. -lb(X)]

4.277

4.278

4.279

4.280

4.281

where h, is the convection heat transfer coefficient. Substituting Eq. 4.281 into

Eq. 4.277 and knowing that:

we obtain:

4.282

dl

Iw-I,(x)

Integration of this equation yields:

1fD h, dxt+--, mC
p

4.283



or

rrD r'InUw -I,(X)) =-:--C Jo h,dx+ C
m p

Page 4.75

4.284

Iw -I.(X) = expC'· exp( :)0'h,dx )=c'exp(:):hjJx ) 4.285

The constant C can be determined using the boundary condition.

4.286

4.290

4.291

as

C =Iw - lbi 4.287

The variation of the bulk temperature along the tube is then given by:

Iw -I. (x) exp( ~ f: hjJX) 4.288
tw -fbi mep

Defining the average value of h, from tube inlet to x as

- ii'h, =- h dx
x 0 ' 4.289

Eq. 4.288 is written as:

Iw -I. (x) (rrDX h- )exp --
t
w
-f

N
me

p
c

This equation tells us that the temperature difference Iw - I. (x) decays

exponentially with the distance along the tube axis. The temperature at the exit

of the tube is obtained by setting x =L in Eqs. 4.288 and 4.289 as:

-"Iw'-----"I''''-(x~) (1tDL h- )- -exp -.- ,L

Iw -Ibi mCp

where ha. is the average value of he for the entire tube.

Eq. 4.288 allows us to determine the bulk temperature I.(x) at a given

axial position. If he can be taken as constant along the tube, the determination

of t. (x) is straightforward. If not, iterations are required to determine the value
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of tb(x) is straightforward. If not, iterations are required to determine the value

of the bulk temperature. The bulk temperature concept introduced in this

section is applicable to both laminar and turbulent flows in tubes.

4.4.1.3 Heat Transfer in Fully Developed Laminar Flow

Although the analysis of the velocity distribution for fully laminar pipe

flow is relatively simple, Eq. 4.262, the analysis of temperature distribution and

consequently film coefficient is complex.

In a circular tube with uniform wall heat flux and fully developed laminar

flow condition, it is analytically found that the Nusselt number is constant,

independent of ReD. Pr and axial location: (Ozirik, 1985), i.e.,

NIL = hoD =4364
.." k . 4.292

In this analytical derivation, it is assumed that the velocity distribution in the tube

is given by Eq. 4.262 which is true for isothermal flows. For constant surface

temperature conditions, it is also found that the Nusselt number is constant:

hD
NUo =--"-k =3.66

4.293

Again, Eq. 4.262 is used for velocity distribution in this analytical analysis.

The use of a velocity distribution corresponding to isothermal flow

condition is only valid for small temperature differences between the fluid and

the tube wall. For large temperature differences, the fluid velocity distribution

will be influenced by these differences as indicated in Fig. 4.23. Curve b shows

the fully developed parabolic distribution that would result for isothermal or very

small temperature difference flow. When the heating is significant, the viscosity

is lowest near the wall; as a result, the velocity increase (curve a)
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+-#-.~-~--+'<\-+- U.

R

Figure 4.23 Influence of large temperature differences on velocity

distributions in a tube

is faster than the isothermal case. (curve b). For the cooling, the reverse

occurs as indicated by curve c of Fig. 4.23: the viscosity is highest near the wall

and the velocity increase is slower than the isothermal case. Consequently,

although Eqs. 4.292 and 4.293 are enticing by their simplicity, for the above

given reasons, they should not yield accurate convection heat transfer

coefficient for laminar flows. Moreover, Eqs. 4.292 and 4.293 are only

applicable to fully developed laminar flow conditions. As we discussed in

laminar flows, the entrance region is quite substantial. In fact, in short tubes this

region can occupy the entire length of the tube.

In parallel to the analytical studies, empirical relations have been

developed to predict convection heat transfer for laminar flows in the entrance

region of a circular tube. Hauseri(1943) developed the following empirical

relation for laminar flow in a circular tube at constant wall temperature:

--- ._.- ----



- h,D _....:O....:.0668--'-'-::'->(D=--..;/L:;<).::..cRe:..J,p""Pr-,="NUD =- =3.66+
kI 1+O.04[(D IL)Re D PrJ"
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4.294

where NUD is the average Nusselt number. The above empirical relation

approaches to the limiting value Nun = 3.66 (Eq. 4.293) as the pipe lergth

becomes very great compared with the diameter. In this relation the fluid

properties are evaluated at the bulk temperature. Eq. 4.294 is recommended

for:

ReD Pr < 100
LID

Sieder and Tale(1936) gave the following more convenient empirical correlation:

( )
113( )0.14

NUD =1.86Re~3PrV3 ~ 1t
4.295

The fluid properties are to be evaluated at the bulk fluid temperature except for

the quantity Jiw, dynamic viscosity, which is evaluated at the wall temperature.

The term (P, /Jiw )' 14 is included to account for the fact that the boundary layer at

the pipe surface is strongly influenced by the temperature dependence of the

roo )0.14

viscosity. This is particularly true for oils. The term VL, / Jiw applies to both

heating and cooling cases. The effect of starting length is included in the term

(D/ L)113
The range of applicability of Eq. 4.295:

0.48 < Pr < 16.700

Jl.0.0044< - < 9.75
J1w

(
Re Pr JlI3( )0,14

P &. ~2
LID J1w
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4.4.2 Turbulent Flow

It is experimentally verified that one-seventh power law (Eq. 4.189),

Blasius relation for shear stress on the wall (Eq. 4.192), Os I°ratio (Eq. 4.203)

and Us IU ratlo(Eq. 4.205) established for a turbulent flow in smooth tubes.

4.4.2.1 Velocity Distribution and Friction Factor

The one-seventh power law given by Eq. 4.189, repeated here for

convenience:

4.189

can also be applied to turbulent flows in pipes by replacing

yby R - r

oby R or D /2

Uby U=

U""" is the maximum velocity (Fig. 4.20). The velocity distribution for a pipe flow

is then given by:

U: =(R;rf
4.296

As in the case of the flat plate flow, this relation is approximate does not

describe accurately the flow situation near the wall, it gives, however, a good

representation of the gross behaviour of turbulent pipe flow. The average

velocity is given by:

_J: 21rrudr
Um - TrR'

U R(R )117
=~ f ---.::..!. dr = O.817U

nR' 0 R =
4.297

To obtain the pipe wall friction factor, we will use the Blasius relation

given by Eq. 4.192 and repeated here for convenience:



(
r )114

Tw =O.0228pU' UO

Replacing,

Tw by T.

oby D/2

Uby U =...!!...­
= 0.817

we obtain:

T = 0.089pU' (~)Jl4
R m UmD

or using the definition of the friction factor given by Eq. 4.267

!
_~_ 0.312 _ 0.312
- 1 - (U D)Jl4 - Rel14

-pU',;:"m;;;;". D
2 m V
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4.192

4.298

4.299

The above relation fits the experimental data well for:

104 < ReD <Sx 104

If the constant 0.312 is replaced by 0.316, the upper limit can be extended to

10'. For higher ReD numbers the following relation can be used:

Prandtl Equation

-+:=2.0Iog (Re.JJ}-0.8 3000 <ReD <3.4x 106

'J! 4.300

von Karman Equation

1,.-; =2.0 log (D / E)+ 1.74
'J!

o 1
--;:-r: >0.01
E Re-,J! 4.301

4.268

Several friction factor correlations are available in the literature.

For turbulent flows, the frictional pressure gradient is given by the came

expression obtained for laminar flows (Eq. 4.268) repeated here:

dp 1 1
- dx=!2PU~D



h
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The only difference is that the friction factor, f, will be determined by using one

of the correlations given above (Eqs. 4.299-4.301) or any other ad-hoc friction

factor correlation available in the literature

4.4.2.2 Heat Transfer in Fully developed Turbulent Flow

The heat transfer correlation established in Section 4.3.2.2 for a flat

plate (Eq. 4.237), repeated here for convenience, is given by:

TwC p

V

1+~(Pr-I)
V 4.237

4.205

This equation was based on Reynolds' analogy as modified by Prandtl. It was

assumed that the turbulent boundary layer consists of two layers: a viscous

layer where the molecular diffusivity is dominant. This structure should remain

the same for turbulent flows in pipes. In order to apply Eq. 4.237 to turbulent

flow in pipes, the following adjustments will be made:

V will be replaced by Vm (Eq. 4.297), and

Tw will be replaced by TR

The velocity ratio Us f V given by Eq. 4.205

~ =1.87{p~or~

will be adapted to pipe flow condition by interpreting:

V
Vas V =' V= =O.8~7(Eq. 4.297) and

oas D /2

Under these conditions, Us /V ratio given by Eq. 4.205 becomes:

~=244(:mDr
2.44
Re"8

D

Using the definition of the friction factor (Eq. 4.267)

4.302



I-~- 1
-pU2

2 m

the wall shear stress orR can be written as:

or = I PU2
R 8 m

We will assume that 1 is given by:

1 =°.316
Re°·25
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4.267

4.303

4.304

Replacing in Eq. 4.287, Uby U m, using Eqs. 4.302, 4.303 and 4.304, and

introducing the Nusselt number (Nu= hp / k!) and diameter Reynolds number

(ReD =PUmD/ jl), we obtain:

4.305

Experiments show that the relation works reasonably well in spite of the

simplifying assumptions that have been made in its derivation. It is usually

suggested (Hoffman, 1938) that the constant 2.44 in Eq 4.305 be replaced by:

1.5Pr-!16

ConsequenUy, Eq. 4.305 becomes:

_ 0.0396 ReI!' Pr
Nu" -1+1.5Pr-l'ReL!"(Pr-I)

4.306

4.307

Both of these relations are based on the determination of the fluid properties at

the bulk fluid temperature. Eqs. 4.305 and 4.307 give good results for fluids with

Pr - number close to 1.

If the difference between the pipe surface temperature and the bulk fluid

temperature is smaller than 6C for liquids and 60C for gases, the following

empirical correlation based on the bulk temperature can be used:

where

Nu" =0.023 Re ~8Prn 4.308
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n =0.4 for heating

n = 0.3 for cooling

This correlation is applicable for smooth pipes for

0.7<Pr<160

Re > IQOOO

L >60
D

For temperature difference greater than those specified above or for fluids more

viscous than water, Sieder and Tale (1936) proposed:

( )

0.14

N"v =0.027Re~8PrII31t
4.309

All properties are evaluated at the bulk fluid temperature except for IIw which is

to be evaluated at the pipe wall temperature. Range of applicability:

0.7<Pr<16,700

Re > IQOOO

L
->60
D

The previous heat transfer correlations give a maximum errors of ± 25% in the

range of 0.67 < Pr < 100 and apply to turbulent flow in smooth tubes. An accurate

correlation applicable to rough ducts has been proposed by Petukhow:

N Re QPr (lx.&)n
"v X 8 II.

-{ 1/2

X = 1.07 + 12.7(PrW -I.{~)

for liquids:

n = 0.11 for heating

n = 0.25 for cooling

for gases: n = O. The range of applicability of the Petukhow correlation is:

4.310

4.311
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104 < Rev <5x 10'

2 < Pr < 140 ~5% error

0.5 < Pr < 2000 ~ 10% error

0.08<& <40
Jlb

All physical properties, except Jlw , are evaluated at the bulk temperature. Jlwis

evaluated at the wall temperature. The friction factor f can be determined

using an adequate correlation such as Eq. 4.300 or 4.301.

4.5 Non-eircular Tubes

So far, discussion of the friction factor, frictional pressure gradient and

heat transfer coefficient for turbulent flow has been limited to flow in circular

tubes. However, in engineering application the flow section is non-circular. The

correlations for friction factor as well as for heat transfer coefficient presented

above may be applied to non-circular tubes if the diameter appearing these

correlations is replaced by the hydraulic diameter of the nOll-circular duct

defined as:

D _ 4A
h- P 4.312

4.313

where A is the cross-sectional area for the flow and P is the wetted parameter.

For example, the hydraulic diameter of an annular cross section with

inner diameter D1, and outer diameter Dzis given by:

4.!!.fD' -D')4 ~, ,

( )
=D, -D,

11: D, +D,

---- -- --.~- ----- _.


	4. Forced Convection Heat Transfer
	4.1 Fundamental Aspects of Viscous Motion and Boundary Layer Motion
	4.1.1 Viscosity
	4.1.2 Fluid Conservation Equations - Laminar Flow
	4.1.3 Fluid Conservation Equation - Turbulent Flow

	4.2 The Concept of Boundary Layer
	4.2.1 Laminar Boundary Layer
	4.2.1.1 Conservation Equations - Local Formulation
	4.2.1.2 Conservation Equations - Integral Formulation

	4.2.2 Turbulent Boundary Layer

	4.3 Forced Convection Over a Flat Plate
	4.3.1 Laminar Boundary Layer
	4.3.1.1 Velocity Boundary Layer - Friction Coefficient
	4.3.1.2 Thermal Boundary Layer - Heat Transfer Coefficient

	4.3.2 Turbulent Boundary Layer
	4.3.2.1 Velocity Boundary Layer - Friction Coefficient
	4.3.2.2 Heat Transfer in the Turbulent Boundary Layer


	4.4 Forced Convection in Ducts
	4.4.1 Laminar Flow
	4.4.1.1 Velocity Distribution and Friction Factor in Laminar Flow
	4.4.1.2 Bulk Temperature
	4.4.1.3 Heat Transfer in Fully Developed Laminar Flow

	4.4.2 Turbulent Flow
	4.4.2.1 Velocity Distribution and Friction Factor
	4.4.2.2 Heat Transfer in Fully Developed Turbulent Flow


	4.5 Non-Circular Tubes

	Figures
	4.1 Variation of the temperature in the fluid next to the heated surface
	4.2 Shear stress applied to a fluid
	4.3
	4.4 Velocity distribution next to a wall
	4.5 Momentum exchange by molecular diffusion
	4.6 Turbulent velocity fluctuations about a time average
	4.7 Velocity profile in the vicinity of a plate
	4.8 Velocity boundary layer in Laminar flow near a plane
	4.9 Control volume for approximate analysis of boundary layer
	4.10 Control volume for integral conservation of energy
	4.11 Turbulent momentum exchange
	4.12 Instantaneous turbulent velocities
	4.13 Mixing length for momentum transfer
	4.14 Mixing length for energy transfer in turbulent flow
	4.15 Velocity & thermal boundary layers for laminar flow past a flat plate
	4.16 Development of laminar & turbulent boundary layers on a flat plate
	4.17 Velocity profiles in the turbulent zone and laminar sub-layer
	4.18 Turbulent boundary layer consisting of two layers: Prandtl approach
	4.19 Flow in the entrance region of a pipe
	4.20 Velocity profile in turbulent pipe flow
	4.21 Control volume in a laminar, fully developed flow in a circular tube
	4.22 Control volumes for integral flow in a tube
	4.23 Influence of large temperature differences on velocity distributions in a tube


