

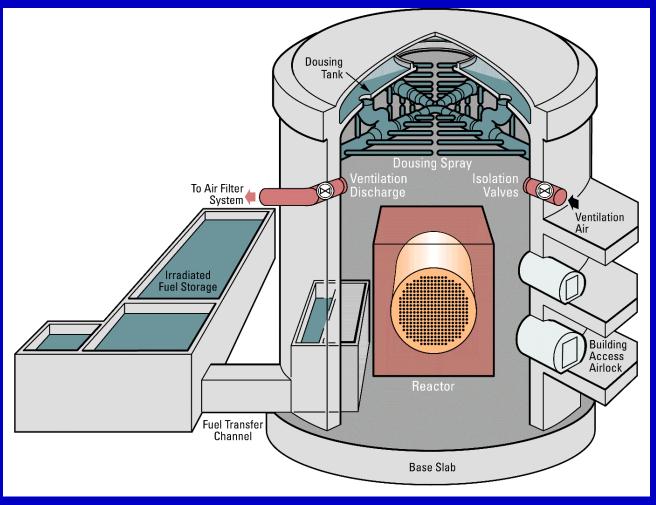
CANDU Safety #8 - Containment

Dr. V.G. Snell
Director
Safety & Licensing

What's Special About CANDU Containment?

- λ not much
- **λ** containment type is not tied to the CANDU design:
 - single unit pressure suppression (CANDU 6)
 - multi-unit vacuum pressure suppression (Ontario Hydro)
 - double containment with suppression pool (recent Indian HWRs)
 - single-unit dry (CANDU 9)

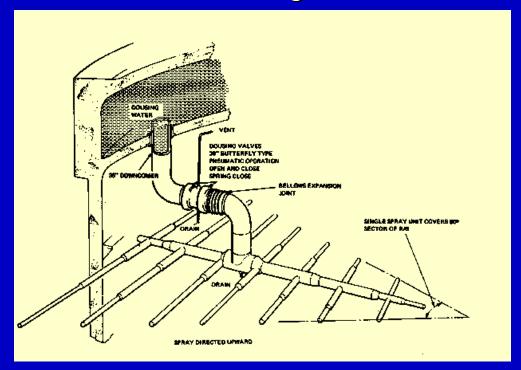
Single Unit Pressure Suppression (CANDU 6)



Fundamental Requirements

- λ design pressure set above pressure reached in large LOCA
- leak rate at design pressure set to ensure the dose to the public in an accident is less than the regulatory limit
- λ note that the dose is *calculated* from:
 - release to containment using physically-based models of reactor physics, fuel, reactor thermohydraulics, etc.
 - containment pressure transient using physically-based models of containment thermohydraulics
 - atmospheric dispersion models

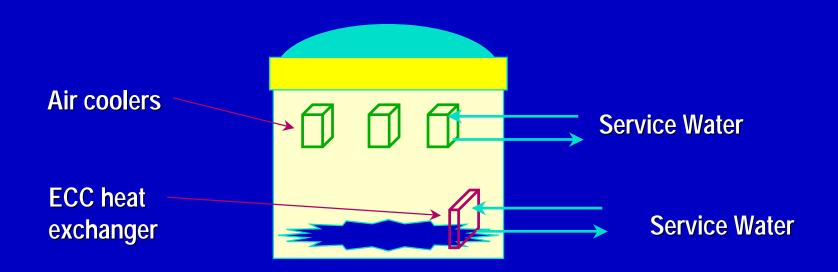
Single-Unit Pressure Suppression


Design Summary - CANDU 6

- **λ** prestressed, post-tensioned concrete structure
 - keeps the building in compression
- λ relatively *large*
 - 41 metres ID \times 44 metres high; 48,000 m³ net volume
 - diameter required for fuelling machines
 - large volume per unit energy allows lower design pressure (124 kPa (g))
- λ wall thickness: 1.1 metres
- walls lined with epoxy for leak-tightness
- λ design leakrate: 0.5% / day at design pressure

Dousing

- **λ powerful pressure suppression,** *not* **like LWR sprays**
- λ in elevated tank around building dome
- λ capacity 1560 m³, flowrate 4500 kg/sec for 4 out of 6 headers


Dousing Operation

- 6 spray headers, each with 2 valves in series (to avoid inadvertent douse, which is costly)
- λ dousing turns on when building pressure reaches 14 kPa (g) and off if it falls to 7 kPa (g)
 - always on for large LOCA until dousing water is all used
 - cycles on & off for small LOCA
- **λ dousing connections above bottom of tank so 500 m³ of water** is reserved for medium-pressure ECC
- **λ** assists in fission product washout
- **λ** no effect in long-term containment pressure control

Long-Term Cooling

- λ 16 local air coolers
- **λ** condensation on structures and equipment
- λ for LOCA, emergency core cooling system heat exchangers

Ventilation

- λ in operation, most of the containment building is accessible, unlike most LWRs
- ventilation is needed for working conditions and to control and condense heavy water vapour
- on a containment isolation signal (high pressure or high radiation), redundant valves in each ventilation line to the atmosphere are closed but *not* major process lines
- α unavailability of ventilation valve closure must be < 10⁻³ as with other safety systems
- λ tested during operation to show the unavailability target is not exceeded

Hydrogen Control

- λ hydrogen can build up:
 - in the short term, from clad oxidation, in a severe accident such as a LOCA + Loss of Emergency Core Cooling
 - in the long term, after a LOCA, due to radiolysis
- natural circulation in containment and the size of the building reduces the hydrogen concentration for LOCA + LOECC
- **λ** forced flow from Local Air Coolers mixes hydrogen
- **Σ** supplemented by 44 igniters to ignite local concentrations
- λ for "worst" LOCA + LOECC, maximum room hydrogen concentration is 7%; building average is 3.5%

Acceptance Criteria

- λ peak pressures must be less than design pressure for:
 - 1. LOCA
 - 2. LOCA with loss of emergency core cooling
 - 3. LOCA with loss of all dousing
- there must be no structural failure which could damage the reactor systems for:
 - 4. steam or feedwater line break
 - 5. steam or feedwater line break with loss of all dousing
- there must be no damage to the containment structure for items 1 to 4

Discussion of Design Pressure

- **x** containment pressure must be less than design for accidents which can release fission products
- λ this includes some severe accidents such as LOCA + LOECC
- containment leakage is not as important for accidents which do not release much radioactivity (and steam line breaks cause a power reduction, not an increase)
- **the structural integrity of the building must be maintained even for some multiple failures**

Overpressure Behaviour

- in severe accidents which increase pressure far beyond design pressure, failure mode is "graceful"
 - increasing leakage through cracks
 - no massive failure
- **λ AECB tests on scaled model CANDU 6 containment**
 - through-wall cracks at 2.7 times design pressure, negligible leakage
 - failure at 4.3 times design pressure if pressure could be maintained
 - leakage rate increases rapidly and prevents failure

Multi-Unit Vacuum Containment

- a each reactor containment is connected by a large duct to a common vacuum building
- water sprays in vacuum building condense steam
- containment stays subatmospheric for days after an accident so the leakage is inward
- very powerful and allowed siting of CANDUs near major city (Toronto)

Vacuum building

Reactor buildings

Pickering 8-Unit CANDU, near Toronto

Single Unit Dry Containment

- λ CANDU 9
- **λ dousing has been removed**
- λ higher containment design pressure
- x steel-lined for increased leaktightness

