CANDU Safety

#5 - Safety Functions - Shutdown Systems

Dr. V.G. Snell

Director

Safety & Licensing
Location of Shutdown Systems Relative to the Reactor and Reactivity Mechanisms
Shutdown System 1

- 28 spring-assisted gravity-drop absorber elements
- poised above core
- supported by cable
- held against spring by clutch; loss of power to clutch causes rods to fall into moderator
- guide tubes guide the absorbers as they fall in
- full insertion in < 2 seconds
Shutdown System #2

- 6 perforated nozzles run horizontally across the moderator.
- Each nozzle is connected to a liquid tank full of GdNO$_3$
- A high-pressure helium tank forces the "poison" into the moderator in < 2 sec.
Performance Requirements

- insertion speed and initial negative reactivity
 - set by the large LOCA
 - turn over the power increase before the fuel or sheath melts
 - significant negative reactivity within 0.6 seconds of trip

- reactivity depth
 - set by a fuel channel rupture (in-core break) on startup after a long shutdown
 - moderator contains boron / gadolinium and after rupture is displaced by "unpoisoned" coolant
 - some shutoff rod guide tubes may be damaged
Reactivity Balance for In-Core Break

<table>
<thead>
<tr>
<th>Reactivity Change Due to:</th>
<th>Reactivity (mk) at 15 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderator poison displacement</td>
<td>10.5</td>
</tr>
<tr>
<td>Coolant void</td>
<td>13.3</td>
</tr>
<tr>
<td>Coolant Temperature</td>
<td>0.3</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>4.1</td>
</tr>
<tr>
<td>Downgrading Moderator Purity</td>
<td>-4.8</td>
</tr>
<tr>
<td>Moderator Temperature</td>
<td>-0.1</td>
</tr>
<tr>
<td>Total to be compensated by shutdown</td>
<td>23.3</td>
</tr>
</tbody>
</table>
Flux Detectors

- SDS1 uses vertical self-powered fast-response platinum flux detectors in core.
- They are not shared with the control system nor with SDS2.
- They are used for local overpower protection and for bulk overpower.
- SDS2 uses separate horizontal in-core detectors.
Ion Chambers

- SDS1 and SDS2 use (separate) ion chambers on the side of the core
- the main purpose is to generate a low-level power signal and a high-rate signal
Typical SDS1 Trip Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Purpose - examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Neutron Power</td>
<td>Loss of reactivity control, LOCA</td>
</tr>
<tr>
<td>High Rate of Rise of Neutron Power</td>
<td>LOCA, loss of reactivity control from low power</td>
</tr>
<tr>
<td>High Coolant Pressure</td>
<td>Loss of flow, loss of heat sink</td>
</tr>
<tr>
<td>Low Coolant Pressure</td>
<td>Small LOCA</td>
</tr>
<tr>
<td>High Building Pressure</td>
<td>LOCA, steam line break</td>
</tr>
<tr>
<td>Low Steam Generator Level</td>
<td>Steam and feedwater line breaks</td>
</tr>
<tr>
<td>Low Pressurizer Level</td>
<td>Small LOCA</td>
</tr>
<tr>
<td>High Moderator Temperature</td>
<td>Loss of service water</td>
</tr>
<tr>
<td>Low Coolant Flow</td>
<td>Loss of flow</td>
</tr>
<tr>
<td>Low Steam Generator Pressure</td>
<td>Steam line break</td>
</tr>
</tbody>
</table>
Typical SDS2 Trip Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Purpose - examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Neutron Power</td>
<td>Loss of reactivity control, LOCA</td>
</tr>
<tr>
<td>High Rate of Rise of Neutron Power</td>
<td>LOCA, loss of reactivity control from low power</td>
</tr>
<tr>
<td>High Coolant Pressure</td>
<td>Loss of flow, loss of heat sink</td>
</tr>
<tr>
<td>Low Coolant Pressure</td>
<td>Small LOCA</td>
</tr>
<tr>
<td>High Building Pressure</td>
<td>LOCA, steam line break</td>
</tr>
<tr>
<td>Low Steam Generator Level</td>
<td>Steam and feedwater line breaks</td>
</tr>
<tr>
<td>Low Pressurizer Level</td>
<td>Small LOCA</td>
</tr>
<tr>
<td>Low Header Δp</td>
<td>Loss of flow</td>
</tr>
<tr>
<td>Low Steam Generator Pressure</td>
<td>Steam line break</td>
</tr>
</tbody>
</table>
SDS1 Two- Out-of-Three Logic

- **Reactor Trip Signal**
- **Reactor**
- **Channel D Instruments**
- **Channel D Logic**
- **Other Parameters**
- **Process Parameters (D, E, F)**

The diagram illustrates the logic behind the reactor trip signal, involving channels D, E, and F.
2 out of 3 Logic

- allows one channel to be tested without tripping the reactor
- allows one channel, if it is known to be faulty, to be put in a safe (trippped) state without tripping the reactor
- permits comparison of the three signals and alerts the operator if any seem inconsistent
Shutdown System Design Requirements

- each shutdown system is effective for all accidents
- they do not share sensing, logic or actuation devices with each other or with the reactor control system
- the design of the two shutdown systems is diverse
 - solid absorber rods and liquid poison injection
 - logic microprocessors programmed by different groups of people in different languages
- where practical, each shutdown system has two diverse trip parameters which are effective for each accident
- in a few cases SDS1 and SDS2 trips are diverse
 - e.g., low flow and low Δp
Shutdown System Design Requirements - More

- the two shutdown systems are oriented differently
 - vertical rods and horizontal nozzles, also for flux detectors
- the cables and instrumentation are physically separated
- each SDS is controlled from a different control room
- each SDS is designed to meet an unavailability of 1 in 1000
- each SDS is tested during operation to show that this unavailability is met:
 - each channel is testable up to the final 2/3 logic
 - any shutoff rod can be partially dropped
 - any poison valve can be opened without firing SDS2
Shutdown System Design Requirements - More

- most process parameters are directly testable: e.g., a shutter can be moved in an ion chamber to test the log rate trip for that channel
- the systems are fail safe as far as possible:
 - loss of power to clutches or poison valves trips the system
 - loss of power to a channel trips the channel
 - loss of power supply trips the channel
 - watchdog timers trip the channel if the logic is not routinely operating
- the operator cannot easily prevent tripping the systems nor change the logic
Lesson Learned from Chernobyl

- The shutdown systems in Chernobyl were adequate according to the safety analysis.
- The designers assumed the operator would not operate the plant in an unusual configuration.
- He did, and the shutdown systems made the accident worse.
- In CANDU:
 - The reactor state does not change much once equilibrium fuelling is reached.
 - The shutdown system effectiveness does not depend much on reactor state.
Summary

- CANDU Shutdown Systems are:
 - effective, acting alone; therefore they are fully redundant
 - diverse in design
 - designed to numerical reliability target
 - testable during operation to show the reliability target is met
 - separated so that a hazard in a local area will not affect both systems