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CHAPTER 4

REACTOR STATICS

The study of a nuclear reactor operating in a steady-state is termed reactor
statics; both short and long time variations represent dynamic characteristics
and will be discussed in the next chapters. Our description here will focus on
certain reactor core parameters such as neutron multiplication and on some
basic spatial distributions such as the neutron flux.

4.1 REACTOR CRITICALITY

We begin our analysis of the reactor core with a description of the neutron
induced fission process. In Fig. 4.1 we show graphically some of the events
which lead to the steady-state condition in a CANDU nuclear reactor. A slow
or thermal neutron, possessing a speed of approximately 2200 mis, is absorbed
in a Uranium-235 nucleus. This Uranium-236 nucleus subsequently breaks up into
two fission fragments of unequal mass and concurrently emits several high energy
neutrons whose energies are in the MeV range. These high energy neutrons sub­
sequently migrate through the reactor core and, in doing so, may undergo a
number of reactions; for example, they may become absorbed in the structural
material in the core or even escape from the reactor core entirely. The one
process of partiCUlar importance to the CANDU reactor is that the neutron loses
its large kinetic energy by elastic collision predominantly in the heavy water
moderator. Once the neutron has attained a relative low kinetic energy it is
mote likely to induce fission in Uranium-235 and thus contribute to the mainten­
ance of the chain reaction. Such a sequence of events represents a life-history
of a neutron and may be viewed as one generation. The time required for this
cycle is relatively short, about 0.001 s; the path traced out by a neutron
during its life-history may very well exceed several meters.

Several pertinent questions come to mind when considering the above sequence of
events. How is it possible to insure that for everyone neutron which causes
fission exactly one neutron will cause a subsequent fission in order that a
steady-state chain reaction can be maintained? How is the chain reaction influ­
enced by the material composition of the core ann hy the ~ize of the reactor?
What is the role of the neutron density and what is the effect of fission products?
Some of the answers to these questions will become clear forthwith while others
will be discussed in subsequent chapters.
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FIG. 4.1: Illustration of fission chain reaction and subsequent events.

One parameter which has become widely used in the analysis of nuclear reactors
is called the effective multiplication constant and identified by the symbol
keff' This parameter represents the ratio of neutrons of two successive gener­
ations in a finite reactor. That is

(4.1)Number of neutrons in a subsequent generationkeff = ....--,.......:.-'--,;--'-'-=-'-'-:--'-..::..;.;..=---.;.-'-'--';,--:--'-----'--'-'1-.---"-------;-;,-Number of neutrons in the preceding generation

Clearly, if keff = 1, a steady-state condition exists because the neutron popul­
ation does not change with time. If keff > 1 then the neutron density is
increasing with time and, since the reactor power varies with the number of
neutrons causing fission, the reactor power increases with time; such a situation
exists during reactor start-up .. If keff < 1 then the fission rate decreases
with time since the neutron density decreases. These effects are graphically
illustrated in Fig. 4.2.

The above description suggests an effective method of reactor control: it is
a matter of controlling the number of neutrons in the reactor. If the reactor
power is to be decreased or if the reactor is to be shut down, then control
rods containing strong neutron absorbing materials are inserted into the core;
the neutrons absorbed in the control rod thus contribute to a neutron deficiency
in the core resulting in a decrease in the fission rate. Withdrawal of the
control rods has the reverse effect. Other possibilities such as neutron booster
rods and moderator level variation may also be employed in reactor control and
will be discussed in subsequent chapters.
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FIG_ 4.2: Variation of reactor power with time for different values of the
effective multiplication constant keff .

We now consider some of the reaction processes which effect the number of neutrons
in successive generation to permit a quantitative representation for keff. The
numerical values chosen here for the various parameters will be those which
approximately apply to the CANDU reactor.

1. Initi a1 Conditi on
We suppose that initially 100 neutrons appear in a given neutron

generation as a result of the fission processes. That is, the denom­
inator in Eq. (4.1) is 100; we now wish to follow these 100 neutrons
through a complete cycle and thus determine the expression for the
numerator in Eq. (4.1).

2. Fast Fission
Before these 100 neutrons have a chance to slow down, several

of these high energy neutrons. say 2, may cause fission in two
Uranium-238 nuclei; supposing that in one fission we have 3 fission
neutrons appearing while in the other 2. Thus, the number of neutrons
has increased to 103. This effect is called the fast fission effect
and is described by the fast fission factor, E, which, in this case,
has the value

E = (100 - z) + 5 =
100 1.03 (4.2)

3. Fast Neutron Leakage
Since these 103 neutrons possess a relatively high energy their
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path between inter'dctions wi th nuclei is very ldrge. Hence, some of
these neutrons may escape entirely from the reactor core. Supposing
that 4 neutrons escape; this now leaves 103 - 4 = 99 neutrons of the
original 100. This effect is called the fast non-leakage probability,
PF, and is given by

(4.3)

4. Resonance Escape Probability
The remaining 99 neutrons now undergo a slowing down process

involving primarily elastic scattering in the moderator. However, in
the course of neutron migration. some of these neutrons may encounter
isotopes such as Uranium-238 which exhibits very strong resonance
absorption in the intermediate energy range. Some 10% of the fission
neutrons are absorbed in these resonances leaving 99 - 10 = 89 neutrons.
This possibility serves to define the resonance escape probability,
p, which in this case, has the value of

p = 9999 10 = 0.899 . (4.4)

5. Thermal Utilization
Now that 89 of the original 100 neutrons have reached thermal

energy we must recognize that neutron absorption can take place in
materials other than in the nuclear fuel. Approximately 5 neutrons
are removed in this parasitic process leaving 89 - 5 = 84 neutrons.
The factor describing this phenomena, designated by, f, and called
thermal utilization, is therefore given by

f = 89 - 5 0 94484 =. . (4.5)

6. Thermal Neutron Leakage
In a manner similar to fast neutron leakage, thermal neutrons may

also leak from the reactor core as well. This may involve some 4
neutrons leaving 84 - 4 = 80 neutrons. The appropriate thermal non­
leakage probability. PT- is found to be

84 - 4
84 = 0.952 (4.6)

7. Fission Neutrons per Neutrons Absorbed
Havinq fo110winq the history of 100 neutrons throuqh the various

events we have now arrived at the point where of the orlginal 100
neutrons 80 are now absorbed in natural uranium. Not all of these
lead to fission because uranium does have a definite parasitic capture
cross section. However, the ratio of fission neutrons emitted per
thermal neutron absorbed is of the order 1.25; this parameter ;s
represented by the symbol 11:

11 = 1.25 . (4.7)
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Hence, the number of new fission neutrons resulting from the absorption
of the 80 thermal neutrons is therefore

n x 80 = 1.2~ x 80 = 100 . (4.8)

Thus starting with an initial set of 100 fast fission neutrons, the same number
of neuLrons has been pruduced in the subsequent generation.

The definition for keff may now be cast in quantitative form.
steps above we note that the number of neutrons in the second
given by the product of the factors enumerated: lOOsPFpfPTn.
multiplication constant is hence represented by

Retracing our
generation is
The effective

(4.9)

where the factor 100 has been cancelled in the numerator and denominator. That
is. keff is independent of the number of initial neutrons and hence is not
effected by power level.

The first four factors in Eq. (4.9) - often called the four-factor-formula ­
is the multiplication constant appropriate for a reactor of infinite size and
represented by

(4.10)

The product PFPT accounts for fast and thermal leakage associated with reactors
of finite size. We may therefore write

(4.11)

where P represents the probability that neither a slow nor a fast neutron
will escape from the reactor.

The neutron cycle, as discussed above, is illustrated graphically in Fig. 4.3.

4.2 APPROACH TO CRITICAL

In the preceding section we described the several processes which are of parti­
cular importance to the determination of the state of criticality of a fissile
assembly. Each parameter listed in Eq. (4.9) can, in principle, be calculated
for a given material composition possessing a specified geometric shape. Indeed.
these calculations are always carried out to determine the fuel loading of a
nuclear reactor. This is not to suggest that, based on calculations alone, the
reactor core materials are assembled up to the composition specified and that
it is then expected to be exactly critical. Indeed, because of uncertainties
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in the nuclear processes involved and approximations in the mathematical and
calculational models, it is required practice that an approach to critical
procedure be employed when the reactor is first made critical.

INITIAL
FISSION
NEUTRONS

'------------~- --- ---------- ------------ -----'----------------------- ------

FIG. 4.3: Illustration of the neutron cycle; the numerical values listed are
approximate and correspond to the valves used in the text.

The approach to critical can best be described by reference to a graphical
representation. Consider Stage I of Fig. 4.4. This represents the reactor core
fully loaded with fuel but containing no moderator. Since any fission neutrons
which might thus appear - either as a result of spontaneous fission or induced
by a small isotopic neutron source - will not slow down due to the absence of a
moderator, very few thermal neutrons which might cause fission will exist, hence
the reactor is far subcritical.

Now consider the case in which some heavy water moderator has been added. Staqe
II in Fig. 4.4. Some neutron moderation is now taking place and, as a consequence,
some neutron multiplication is occurring. As more moderator is added, more



FIG. 4.4: Illustration of the approach to
critical. The moderator level is success­
ively raised and the neutron density measured
at each step.

fissions occur and the neutron
density in the core increases to
a new level. Eventually, at some
critical height of the moderator,
criticality will occur which
means that a strict balance
exists between (l) neutron
production by fission, (2)
neutron removal by absorption,
and (3) neutron escape from the
reactor by leakage. From here
on, the appropriate management
of control rods provides the
necessary operating mechanism.

The above can be described ana­
lytically and thus provide a
basis for monitoring the approach
to critical. Supposing a neutron
detector were located so as to
provide an indication of an aver­
age neutron density in the
moderator. If, at a given time
during the approach to critical,
the effective multiplication
constant was given by keff then
if n number of neutrons are
introduced in the reactor core
they will produce nkeff neutrons
in the second generatlon. These
nk neutrons subsequently lead
to (nkeff)keff = nk~ff neutrons
in the next generatlon and so
on. The neutron density as
recorded by the detector at any
moderator level is given by the infinite
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S = n + nkeff + nk~ff + nk~ff + ... ,

= n(l + keff + k~ff + k~ff + ... ) . (4.12)

Since the reactor is subcritica1, keff is less than unity and the above series
can be shown to be written as

S = n( 1
1 )
keff

(4.13)

As the moderator level continued to be raised, keff approaches unity and hence
the neutron count rate, S, approaches an increasingly large number. The moder­
ator height at which the reactor is critical is determined by extrapolation the
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the inverse of the detector count rate, liS, to zero. This is graphically
shown in Fig. 4.5. Except for emergency dumps and other designed operating
procedures, the moderator level ;s kept just below this critical height.
The control rods arp then us~d to provide overall reactor control. This sub­
ject will be further discussed in a subsequent chapter. Of more immediate
interest in the problem of specifying the neutron flux in the reactor core.
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FIG. 4.5: Inverse of neutron detector count rate as a function of moderator
hei ght.

4.3 NEUTRON DIfFUSION ANALYSIS

In the preceding sections we have discussed some of the processes which are
important to the attainment of a steady-state critical condition in a reactor
core. We now consider such a steady-state core from the standpoint of deter­
mining the neutron density or the neutron flux density. A knowledge of how
the flux varies in a reactor is important since many of the vital processes,
such as fuel burnup, are directly related to the neutron flux.

We recall that the neutron-nucleus interaction density at a point ~ ;n the core
for the i'th type of process may be written

(4.14)

where the symbolism is used as defined previously. Also, in view of our dis­
cussion of energy dependence, we assume here that the neutron flux, ~(r) ;s
suitably averaged so that Eq. (4.14) adequately represents the interaction
density rate (neutrons/cm3-s) at the point!" The above expression may be
termed an energy-averaged interaction density.
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FIG. 4.6: Graphical representation of
the neutron density and neutron flux.

(4.15)

Points in unit
volume represent
nl!lJtron density

Arrows penetrating
unit area represent
neulrun flux

Total path length
of neutron motion
in unit volume
represents neutron
flux

r-

(

Number of neutrons1
+ leaking from volume

element dV

4, we know that the neutron

x

x

The determination of the flux in
our simplified reactor follows
from a consideration of neutron
conservation for an arbitrary
differential volume element and
a subsequent solution of a differ­
ential equation. Consider an
arbitrary volume element about
the vector point r in the
reactor core, Fig-:- 4.7. In
order to maintain a steady-
state condition, we must have
a strict equality between the
number of neutrons produced as
a result of the fission process
and the number of neutrons
ah~orhed and leaked from the volume element:

(

Number of neutrons) (Number of neutron,
produced by fission = absorbed in volume
in volume element dV element dV

In view of our discussion in Chapter 3, Section
absorption rate per unit volume is given by

When listing the fission density rate
and neutron absorption density rate,
Chapter 3, we noted that the neutron
flux $(~) represents a factor in
each of these representations.
Indeed, the neutron flux can be
considered to be the most widely
used distribution function in the
analysis of a nuclear reactor core.
The dimensions of this quantity
is neutrons/cm2-s and suggests
the totality of neutrons which
pass through a unit area in all
directions during one second.
Another interpretation is to
visualize the neutron flux as
the total path of all neutrons
ina un it volume formed per second.
Fig. 4.6 provides a graphical
representation of the flux ~(!)

and also shows a graphical repre­
sentation of the neutron density
n(~) .

Neutron absorption rate:: Ea~(~) . (4.16)
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The number of neutrons produced by fission as a result of neutron absorption
is equal to the absorption rate times the neutron multiplication constant kro .
Hence,

Neutron production rate = krol:a<pCr)

DIFFERENTIAL
UNIT
VOLUME

r7
R

J

FIG. 4.7: Differential arbitrary volume element in reactor core.

(4.17)

(4.18)

The neutron leakage term in Eq.' (4.15) can be determined from a detailed neutron
conservation analysis. We consider the following procedure. Let ~(+) represent
the neutron current vector. Then, the total number of neutrons leaklng from the
differential volume element. Fig. 4.7. is given by taking the normal component
of this vector and integrating it over the differential volume element. That is

Neutron leakage rate= f ~Cr).d~
t,V

This vector integral expression can be reduced to a volume integration using
the Divergence Theorem of vector algebra

f
J(r)·dA = J v·J(r)dV ,
-+ -+ -+ -+ -+ -+

t,V t,V

(4.19)
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Here v represents the del operator. Since Eq. (4.19) represents the total
number of neutrons leaking from the volume element per second, then the number
of neutrons leaking per unit volume per second is given by its integrant, thus

Neutron leakage rate=. v.J(r)
-+-+-+

The balance equation, Eq. (4.7), may now be written symbolically as

kooEa~(r) = Ea~(r) + v·J(r)
-+ -+ -+ -+ -+

(4.20)

(4.21 )

Although this equation is analytically correct for our simplified reactor model
and thus far is free of any approximations, it is of little utility because it
represents one equation in two functions: namely the neutron flux ~(t) and the
neutron vector current ~(!). A relationship between those two functions must be
sought.

It is physically plausible to consider a neutron diffusion phenomena which
describes the motion of neutrons from regions of high neutron density to regions
of low neutron density; this process is similar to heat diffusion and mass
diffusion. Indeed. the relationship is between the current quantity and the
gradient of a density quantity; that is, the neutron current ~(r) is proportional
to the gradient of the neutron density, net}. -+

(4.22)

or, written in the form of a direct equality

(4.23)

(4.24)

(4.26)

where 8 is a constant. We use the definition of the neutron flux, ~(r) = n(r}v,
into Eq. (4.23) and write -+ -+

v
J C!;} = -8 ~ ~(r;) = -D~~Cr;} .

Here, 0 is called the diffusion constant. Inserting Eq. (4.24) into Eq. (4.21)
yields

kooEa~Cl:) = Ea<p(.l:' + Y'[-OY~(r)J = EaCr) - ov2<pCr} . (4.25)

We may rewrite this equation in the more common form
k - 1

v2<p(r) + (=L2 )<p(r) = 0

where

L
2 = OlEa' {4.27}

This parameter L2 is called the diffusion area and, pictorially, is proportional
to the area swept out by a neutron from the time it appeared as a thermal
neutron to the time it is absorbed.
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Equation (4.26) represents the differential equation for the macroscopic flux
in the one-speed description. Since the parameters koo and L2 are constants
we define

82 = koo - 1 (4.28)
r~ L2 '

where 82 is called the material buckling. Note that it is fully described by
the mat~ria1 composition of the homogeneous core since both parameters, k

oo
and

L?, depend only on the material.

In the following section we consider the solution to Eq. (4.26) and thus deter­
mine an additional condition relating the geometry of the cylindrical core to
its material properties.

4.4 MACROSCOPIC FLUX

We summarize some of the salient points of our analysis thus far. The energy
averaged neutron flux in cylindrical geometry of an unreflected homogeneous
cor'e satisfies d differential equation of the form

(4.29)

which, in cylindrical geometry and recognlzlng that for azimuthal symmetry the
position vector r is defined by the pair of coordinates (r,z), is written as

-+

} ~r r ~ (r,z) + :~~ (r,z) + B2~(r,z) = 0 (4.30)

Finding a function ~(r,z) which satisfies this partial differential equation
and the boundary conditions is now our objective. Fig. 4.7 shows the orient­
ation of the coordinate system for the CANDU geometry.

We proceed to solve Eq. (4.30) based on two important, although very legitimate,
assumptions for systems such as the CANDU reactor. We assume that under steady­
state conditions the neutron flux in the r-direction is independent of the flux
in the z-direction and hence propose a solution given by the product of two
independent functions ~r(r) and ~z(z):

(4.31 )

Further, we assume that the neutron flux may be considered to be zero on the
surface of the core. Both of these assumptions represent approximations but
it is a remarkable fact that in spite of these assumptions and those embodied
in the derivation of the neutron diffusion equation, Eq. (4.26), the resultant
solution is a remarkably good approximation when applied to large homogeneous
reactors of the CANDU type. Let us proceed with the solution.
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We substitute the proposed solution form, Eq. (4.31) into Eq. (4.30) and, after
some manipulation, obtain

1 ~ r d~r(r) + 1 d2~z(z) + B2 = 0 .
~r(r) dr dr ~z(z) dz2

Since the first and second terms in this equation depend only on rand z respect­
ively and together combine with a constant to add to zero, each of these functions
must be equal to a constant. Hence, we write

and

2= -a. (4.33)

where

(4.34)

(4.35)

Thus. rather than solving one second order partial differential equation. we
have two second order ordinary differential equations to solve; techniques
for solving such ordinary equations are well known. We write immediately

and

~r(r) = ArJo(2.405 ~) ,

requi ri ng that

2
ex =

and

(4.36)

(4.37)

(4.38)

(4.39)

In writing down the above independent solutions, we have incorporated the zero­
flux boundary condition referred to above and have required that only those
solutions which are physically real - that is. finite everywhere - are taken
into account. In addition, we have taken only the dominant terms which are
applicable in a steady-state reactor. The function J o(2.405 r/R) is called
an Ordinary Bessel function of Order Zero while cos(nz/L) is the trigonometer
cosine function.
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The lIldcroscopic flux in the CANDU cylindrical reactor in our homogeneous core
is thus given by

~(r,z) = AoJ o(Z.405 f)COS(H Z
) ,

and the constant B2 is

(4.40)

(4.41 )

The radial flux, ~r{r), and the axial flux, ~z(z), are shown graphically in
Fig. 4.8. Here we note that the neutron flux, and hence power densities peak
in the center of the core and decrease toward the edges.

R R

FIG. 4.8: Shape of the axial and radial neutron flux in a homogeneous cylindrical
reactorat the center and near the edge in the axial and radial
directions.

An important consideration is associated with the buckling parameter B2 in Eq.
(4.32). Here we have found that this term is expressed specifically in terms
of the geometric properties of the core, that is, the length H and radius R,
Eq. (4.41). For this reason, this is defined as the geometric buckling B~
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(4.42)

to distinguish it from the material buckling B~, Eq. (4.28). Since both flux
equations, Eq. (~.26) and Eq. (~.29) describe the neutron flux for a steady
state critical reactor, the two buck1ings must of necessity be the same. Hence
the geometric properties are related to the material properties and we equate
B~ with B~

k - 1 (2 .~05)2 + (~)200

L2 =

or, in a more common form

k
00

1
+ L2B2 =

1 G

(4.43)

(4.44)

Thus, to attain a steady-state critical reactor the materials composition must
be s02chosen and the reactor dimensions so specified that the parameters k~> L2
and BG satisfy Eq. (4.44).

4.5 HETEROGENEOUS CORE

In the above discussion we have assumed that the reactor core is homogeneous.
Clearly, this is not the case in the CANDU core nor is it true for most other
power reactors. Fuel, cladd1ng, coolant, control rods and structural elelllenLs
contribute to affect the neutron flux and cause it to deviate from the smooth
representation as found in the preceding section and graphically displayed in
Fig. 4.8. For example, consider the region on both sides of the pressure tube.
To one side we have an insulating concentric air filled gap followed by the
calandria tube and the moderator. Towards the other radial direction, there
exists a repetitious lattice of D20 coolant, zirconium fuel sheathing and
nuclear fuel.

Insofar as the thermal neutron flux is concerned, it is possible to make some
generalizations based on our previous discussion of neutron absorption and
neutron slowing-down. In the fuel itself, we know that strong neutron absorption
is taking place and hence the thermal neutron flux must be relatively low. On
the other extreme, the thermal neutron flux in the moderator must be relatively
high because it is in this region that neutron slowing down is particularly
pronounced. Requiring continuity of the neutron flux and the neutron current
we may readily sketch the neutron flux in this heterrogeneous region, Fig. 4.9.

Consider now a fuel-element as a whole. Neutronic considerations similar to the
analysis above suggest that a relative increase in the thermal neutron flux should
occur at the end of each fuel bundle. In Fig. 4.10 we show the quantitative
results from such a detailed microscopic flux calculation in both the radial
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FIG. 4.9: Effect of material variations on
the thermal neutron flux.

On a larger scale, the neutron flux
is significantly affected by
control rods and other flux
modifying devices. These
devices serve the important
function of depressing the
flux in the central region
where - as was found in solving
the diffusion equation for a
homogeneous reactor, Fig. 4.8 -
the neutron flux would nonnal1y
be highest. These devices thus
permit a more uniform burnup
of fuel and provide for smaller
temperature variations. The
flux in an actual CANDU reactor
in the axial direction is
shown at two radial positions
in Fig. 4.11. Note here, the
three locations for the flux
flattening and control rod
devi ces.

As a final illustration we show
a comparison between a
calculated neutron flux and that
obtained by direct measurement
for an extreme case of non­
symmetric flux distortion by a
selective use of control rods,
Fig. 4.12. The remarkable
agreement between theory and
experiment bears out the previous
comment about the relevance and
suitability of neutron diffusion
analysis in CANDU reactors.

and axial direction in the vicinity
of the end of a fuel bundle. We
conclude that the detailed spatial
thermal flux variations attribut­
able to material heterrogeneities
must be superimposed on the smooth
flux shape calculated for a
homogeneous reactor core in the
previous section, Fig. 4.8, for
a more accurate description of
the reactor core.

FIG. 4.l0~ Microscopic flux
near the end of a fuel element.
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THERMAL NEUTRON flUX

FIG. 4.11: Effect of reactor control devices on the macroscopic neutron flux.
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FIG. 4.12: Comparison between calculated and measured macroscopic neutron flux
for the case of a sever flux distortion.
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