

INDEX

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics

T.T.3-2.5-1	Definitions	May 1964 (R-1)
T.T.3-2.5-2	Changes of State of Water	May 1964 (R-0)
T.T.3-2.5-3	Uses of Thermal Expansion Effects	May 1964 (R-1)
T.T.3-2.5-4	Expansion of Gases - Gas Laws	May 1964 (R-1)
T.T.3-2.5-5	Expansion of Gases - Character- istic Equation of a Gas	May 1964 (R-1)
T.T.3-2.5-6	Graphs	May 1964 (R-0)
T.T.3-2.5-7	Steam and Water	May 1964 (R-1)
T.T.3-2.5-8	Steam Tables.	May 1964 (R-1)
T.T.3-2.5-9	Air and Steam	May 1964 (R-1)
T.T.3-2.5-10	Dew Point Hygrometer	May 1964 (R-1)

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -1 Definitions

O.O INTRODUCTION

This lesson will define specific heat, change of state of a substance, sensible heat, and superheat.

1.0 INFORMATION

We know that in order to raise the temperature of one pound of a substance by one degree fahrenheit, we have to add a certain amount of Heat. The amount of heat required to raise the temperature of equal weights of various substances by one degree fahrenheit depends on the "Specific Heat" of the substances. Therefore, we can define Specific Heat as follows:

"Specific Heat" - The amount of heat that must be added or removed in order to change the temperature of one pound of a substance by one degree Fahrenheit.

The Specific Heat constant is usually denoted with the letter 'C'. The units used in engineering in this country are British Thermal Units per pound per degree Fahrenheit (BTU's/lb/°F). Water which is one of the most common substances has a specific heat of 1.0 BTU's/lb/°F.

As an example, let's calculate the amount of heat required to raise the temperature of 40 pounds of water by $50^{\circ}F$. As previously stated, the Specific Heat for water is C = 1.0 BTU's/lb/°F. Then:

to raise the temperature of 1 pound of water by $1^{\circ}F$, we need $1 \times 1 \times 1 = 1$ BTU.

to raise the temperature of 40 pounds of water by $1^{\circ}F$, we need $40 \times 1 \times 1 = 40$ BTU's.

to raise the temperature of 40 pounds of water by 50° F, we need $40 \times 50 \times 1 = 2000$ BTU's.

Therefore, the amount of heat to be added or removed to raise or lower the temperature of "W" pounds of a substance by ΔT degrees fahrenheit when the specific heat of the substance is 'C' BTU's/lb/ "F would be 'Q' BTU's.

Thus we can write the formula.

where:

Q = Total heat transferred in BTU's. W = Weight of substance in pounds $\Delta T = T_1 - T_0 = Temperature$ change in the substance in °F C = Specific Heat constant in BTU's/lb/°F.

Sample Problem

Find the amount of heat to be added to a boiler feed pump to raise its metal temperature from 75°F to 175°F. Assuming that the effective weight of the pump metal is 1000 pounds and that all of its components are made of steel having a specific heat constant $C = 0.11 \, BTU's/lb/°F$.

Solution:

Using equation (1), we have:

 $Q = W \times \Delta T \times C$

 $= 1000 \times 100 \times 0.11$

= 11,000 BTU's are to be added.

1.1 Change of State

The majority of substances can exist in three different states, i.e., solid, liquid and gaseous.

To change a substance from a solid to a liquid state heat has to be added. Conversely, when changing from a liquid to solid, heat has to be extracted. This change of state can only take place at a certain temperature - namely, the melting point (also known as freezing point) for the substance. The amount of heat required to be transferred per pound of substance to change it from solid to liquid or liquid to solid is called latent heat of fusion.

Similarly, to change a substance from a liquid to a gaseous or vapor state, heat has to be added. Going in the reverse direction, when condensing gas (vapor) to liquid, heat has to be extracted.

Again this change of state can take place only at a certain temperature - i.e. at the boiling point. (Other commonly known names for this very same temperature are: saturation temperature or condensation temperature.) The amount of heat required to be transferred per pound of a substance to change it from liquid to vapor or vapor to liquid is called latent heat of vaporization.

Two important points regarding the above discussion should be noted:

- a) The freezing point temperatures and boiling point temperatures of substances vary as pressure varies; e.g. at atmospheric pressure, water boils at 212°F, at 400 psia water boils at 444.58°F.
- b) The temperature of the substance remains constant during the time that the transfer of heat involved in latent heat of fusion and latent heat of vaporization takes place. Later lessons will deal with this subject in greater detail.

1.2 Sensible Heat

In the preceding paragraphs, we have mentioned what occurs at the freezing point and boiling point of a substance, but mothing about what happens in between.

Let us consider water as an example. At atmospheric pressure its freezing point is 32°F and boiling point 212°F. i.e. if water is at its freezing point, an increase of 180°F is required to bring it to a boil. From our definition of specific heat you will notice that to raise 1 lb. of water from 32°F to 212°F (at atmospheric pressure) requires 180 BTU's of heat.

We can say then, that this addition of heat results in a change of temperature which can be "sensed" by a thermometer, or by your hand if you stick it into the water. We can, therefore, make the following definition:

Sensible Heat is the quantity of heat required to be transferred per pound of a substance in changing its temperature from freezing point (or any temperature above the freezing point) to the boiling point (or vice versa).

This quantity of heat is sometimes also referred to as "liquid heat" since it takes place when the substance is in a truly liquid state. However, the term "sensible heat" will be used in these lessons.

1.3 Superheat

Up to this point we have dealt with changing a substance from a solid to a liquid and from a liquid to a vapor. This vapor is still at the boiling point temperature.

If further heat is added so that the temperature rises above the boiling point, then we say that the vapor is superheated. Superheated vapor is vapor at some temperature above the boiling point temperature (saturation temperature).

To define the state of a superheated vapor, it is important to specify both the temperature and pressure. Often we speak of "degrees of superheat" which is the difference between the actual temperature of the superheated vapor and the boiling point temperature for the existing pressure.

For example, let us say we have water at a pressure of 400 psia. The boiling temperature at this pressure is $444.58^{\circ}F$. However, if we find that the actual temperature is $520^{\circ}F$ at this pressure, then we would say we have: $520^{\circ}F - 444.58^{\circ}F = 75.42^{\circ}F$ superheat.

You might say that degrees superheat can also be "sensed" by a thermometer and therefore we should also refer to it as "sensible heat". This is true, but in order to distinguish between heat in a liquid and heat in a vapor state, convention has established that heat in vapor above the boiling point temperature shall be known as superheat.

1.4 Gas and Vapor

You will notice from the preceding definitions that the terms vapor and gas have been used interchangeably. In thermodynamics, the distinction between gas and vapor is somewhat vague.

However, the following can be used as a guide.

If the temperature of the substance is just slightly above the temperature at which it would condense or turn into liquid, then it is known as "vapor". If the temperature of the substance is considerably above the temperature at which it would liquify, then it is known as "gas".

A gas generally follows the perfect gas laws, whereas a vapor does not.

For example, oxygen, nitrogen, etc., at ordinary temperatures are gases; whereas, water or alcohol, on evaporation would furnish vapors. Steam with high degrees of superheat will behave as a gas.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -1 Definitions
- A Assignment
- 1. Define "Specific Heat".
- 2. Define "Latent Heat of Fusion".
- 3. Define "Latent Heat of Vaporization".
- 4. Explain what is meant by "sensible heat".
- 5. Define superheat.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -2 Changes of State of Water

O.O INTRODUCTION

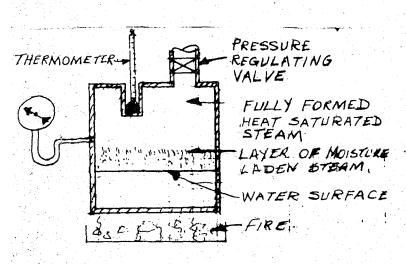
Part of the previous lesson dealt with the change of state as applied to any substance. This lesson will deal with the change of state for water and expand specifically the concept of latent heat of fusion and latent heat of vaporization.

1.0 INFORMATION

1.1 Latent Heat of Fusion

We know that in order to melt 1 lb. block of ice we have to supply heat to it; the outside surface will arrive at a temperature of 32°F, at which time the solid will start turning to liquid. If this block of ice is in a container, the water formed will remain at 32°F until all the ice is melted, even though heat is being added all the time.

In accordance with our lesson on heat definitions, the heat added to one pound of ice while it completely changes to water at 32°F is called latent heat of fusion.


By the same token, to change one pound of water at 32°F to ice, at 32°F, we will have to remove this same amount of heat.

1.2 Latent Heat of Vaporization

Again let us consider the same pound of water, used in the previous example, which we now want to change into a gaseous state - i.e. vaporize. Convention has established another way of saying the same thing which is to change water to steam.

Suppose this pound of water is still at 32°F. In order to produce steam, we first have to add 180 BTU's of sensible heat to raise it 180°F - i.e. 32°F + 180°F = 212°F, which, as you know, is the boiling point for water at atmospheric pressure. If no more heat is added, the water will not boil and steam will not be produced. Water at the boiling point temperature - i.e. when it has been saturated with sensible heat but does not contain any latent heat of vaporization as yet, is said to be "saturated water."

However, if we keep on adding heat to this pound of water, it will eventually all end up as steam.

Fig. 1

Referring to Figure 1, let us analyze more closely what happens when water changes to steam.

Assume that we have a glass window in the container, so we can observe what goes on inside and also that the pressure regulating valve is open so that the pressure will remain atmospheric through the process.

As heat is added to the water at 212°F, it will begin to boil. Looking through the glass window at the surface of the water, it would be seen that, as the bubbles of steam break through the water surface, they carry with them small droplets

of water, and in the same space immediately above the water, would be a layer of steam which held entrained, finely divided particles of water not yet fully converted into steam. Although these small particles of water have received a full quota of sensible heat and are at a temperature of 212°F, they have not yet taken up enough latent heat to turn them into steam. On the other hand, the steam in which they are carried has received the required amount of both sensible and latent heat.

This layer of steam which contains fine particles of water and is in contact with the surface of the water is called wet steam.

Assuming that the water is boiling gently, this layer of wet steam would remain fairly close to the surface of the water. Above this layer would be steam which contains no fine particles of water. This is steam which has received the full quota of both sensible and latent heat and in which all water has been fully converted into steam. Steam in this state is called <u>saturated</u> steam because it is in fact, saturated with the full quota of latent heat and is fully formed steam.

Note especially, that steam which contains moisture is not saturated steam, but wet steam, because it is not fully formed or heat saturated.

In accordance with our lessons on definitions, for this particular example, the amount of heat added to vaporize one pound of water, the temperature remaining constant, is what is known as the latent heat of vaporization. If this pound of water were heated still more after it had all evaporated, then, of course, we would be producing superheated steam.

1.3 Condensing

A vapor can be changed back to a solid by extracting heat - i.e. by cooling. Extracting heat from superheated steam at constant pressure drops its temperature until it becomes saturated steam. It then condenses at constant temperature until it becomes saturated water. Cooling the water at constant pressure reduces its temperature, and it is then known as subcooled liquid. Finally the subcooled liquid freezes at constant temperature until it becomes ice.

1.4 Definition of Symbols

The units used for latent heat of fusion, sensible heat, latent heat of vaporization and superheat are BTU's/lb. This unit has been defined in Lesson T.T.4-2.5.2.2.

The following symbols have been accepted by convention to represent the various quantities of heat referred to in this lesson:

L = latent heat of fusion BTU's/lb.

 $h_f = \text{enthalpy of saturated liquid (sensible heat) BTU/lb.}$ (f = fluid)

 h_{fg} = latent heat of vaporization BTU's/lb (fg = fluid to gas).

 $h_g = \text{enthalpy of saturated steam BTU's/lb} = h_f + h_{fg}$ (g = gas).

h = total enthalpy of superheated steam BTU's/lb.

W = weight of ice, water or steam in lbs.

q = total amount of heat to be transferred BTU's

Knowing the above, we can write the following equations:

- a) For latent heat of fusion: $q = W \times L$.
- b) For sensible heat: $q = W \times h_f = W \times C (T_B T_o)$

where: C = Specific heat constant BTU's/lb/°F. (for water C = 1) $T_B = Boiling Point Temperature °F$. $T_O = Original liquid temperature °F$.

- c) For latent heat of vaporization: $q = W \times h_{fg}$
- d) For enthalpy of saturated steam: $q = W(h_f + h_{fg}) = W \times h_g$.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -2 Changes of State of Water
- A Assignment
- 1. Explain:
- saturated water
- wet steam
- saturated steam
- 2. For water at atmospheric pressure, what is the value in BTU's/1b of:

 - Latent heat of fusion Latent heat of vaporization.
- Define L, h_f, h_{fg}, h_g, and h. 3.
- A 75 lb. block of ice is at atmospheric pressure and a temperature of -18°F. If you were required to change this to dry saturated steam at atmospheric pressure, how much heat would you have to add to this block of ice?

2 - Science Fundamentals - T.T.3

5 - Heat & Thermodynamics

-3 - Uses of Thermal Expansion Effects

O.O INTRODUCTION

In this lesson we will discuss some of the ways in which "Thermal Expansion Effects" are used in practice.

1.0 INFORMATION

Let us first refresh our memory on the way in which objects expand linearily and volumetrically. This had been covered in the T.T.4 lesson on Thermal Expansion.

An object expands linearily according to the following equation:

 $L_1 = L_0 \left[1 + C_L(t_1 - t_0) \right] \dots (1)$

The volumetric expansion of an object is expressed by an equation as follows:

$$V_1 = V_0 \left[1 + C_v(t_1 - t_0) \right] \dots (2)$$

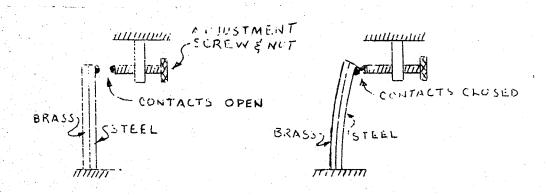
1.1 Applications of Linear Expansion

Sample Problem No. 1

Let us assume that we have to shrink a gear onto a shaft and that the inside diameter of the gear is 2000 inches and that the shaft has an outside diameter of 2.002 inches. Both the gear and the shaft being at the same temperature.

The linear expansion coefficient for the shaft and the gear will be taken as:

$$C_{L} = 6.0 \times 10^{-6} \text{ per } ^{\circ}\text{F}.$$


We shall now calculate the temperature difference (t_g - t_s) between the gear and the shaft required to expand the gear's internal diameter to 2.002 inches.

$$L_1 = L_0 \left[1 + C_L(t_G - t_S) \right]$$

2.002 = 2.000 $\left[1 + C_L(t_G - t_S) \right]$

= 2.000
$$\left[1 + 0.000006 \left(t_{G} - t_{s}\right)\right]$$

 $\frac{2.002}{2.000} = 1 + 0.000006 \left(t_{G} - t_{s}\right)$
 $1.001 = 1 + 0.000006 \left(t_{G} - t_{s}\right)$
 $0.001 = 0.000006 \left(t_{G} - t_{s}\right)$
... $t_{G} - t_{s} = \frac{0.001}{0.000006} = \frac{1}{0.006} = \frac{167^{\circ}F}{0.006}$

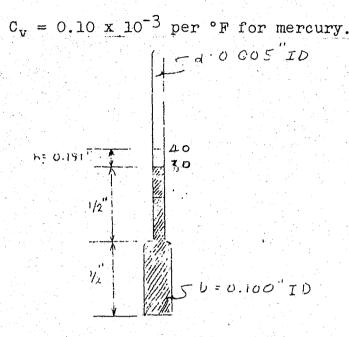
Therefore, we have found that we must either increase the gear metal temperature by 167°F or more by heating it, or lower the shaft metal temperature by 167°F or more by cooling it with liquid nitrogen. I should be noticed that it is only important to have the temperature difference between the gear and the shaft to be equal to or greater than 167°F.

The linear expansion effect is also employed in bimetallic metal strips which are used in different types of temperature switches and thermometres. Here two dissimilar metal strips are joined by rivets or by welding. Due to the difference in expansion coefficients of the two different metals, the bimetallic strip will bend when heated, since one of the strips will expand more than the other. This is illustrated diagramatically below.

'COLD CONDITION'

"HOT CONDITION'

1.2 Application of Volumetric Expansion


We shall now consider volumetric expansion and see how it is used in practice.

Sample Problem No. 2

Let us assume that we are to calibrate a mercury thermometer. The thermometer consists of a glass tube which has a uniform diameter

bore, and a cylindrical glass tube for a reservoir at its bottom end. The resevoir and part of the thermometer tube are filled with mercury. The air is then removed from above the mercury column and the top end is capped. For simplicity we assume that the expansion of the glass tube and reservoir is negligible.

Assume that the mercury and the glass tube are initially at a temperature of 30°F and the height of the mercury column is exactly 1".

The volume of mercury in the thermometer at 30°F is

$$V_{0} = \text{AREA x HEIGHT} = \frac{\pi D^{2}}{4} + \frac{\pi D^{2}}{4} + \frac{\pi}{4}$$

$$V_{0} = \frac{\pi \times 0.10^{2}}{4} \times 0.5 + \frac{\pi \times 0.005^{2}}{4} \times 0.5$$

$$= \frac{0.5 \times 3.14}{4} (0.1^{2} + 0.005^{2}) = 0.3925 (0.01+0.000025)$$

$$= 0.3925 (0.010025) = 0.0039348125 \text{ in}^{3}$$

$$= 0.0039348 \text{ in}^{3}$$

Now let us calculate the distance at which the 40°F mark has to be etched from the 30°F mark by using equation (2)

$$V_1 = V_0 \left[1 + C_v \left(t_1 - t_0 \right) \right]$$

= 0.0039348 $\left[1 + 0.0001 \left(40 - 30 \right) \right]$
= 0.0039348 $\left[1 + 0.001 \right]$
= 0.0039348 x 1.001
= 0.0039387348 in³ = 0.0039387 in³

Increase in volume
$$V_1 - V_0 = (0.0039387 - 0.0039348) in^3$$

= 0.0000039 in³

The cross-sectional area of the small diameter portion of the glass tube is:

$$A = \frac{\pi d^{2}}{4}$$

$$= \frac{\pi \times 0.005^{2}}{4} = \frac{25 \times 10^{-6} \times 3.14}{4} = 19.625 \times 10^{-6}$$

$$= 0.000019625 \text{ in}^{2}$$

The distance between the 30°F and 40°F lines is then:

$$h_1 = \frac{v_1 - v_0}{A} = \frac{0.000039}{0.00019625} = \frac{0.198}{0.00019625}$$

By changing the diameter ratio D/d we can vary the distance between the adjacent graduation lines on the thermometer as desired.

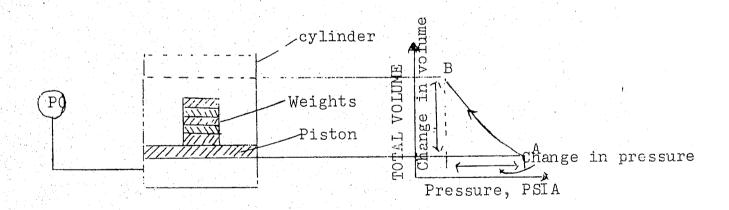
The volumetric expansion principle is also used in many other devices, especially in various controls like temperature control valves, copes single element feed water control valves, etc.

D. Dueck.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -3 Uses of Thermal Expansion Effects
 - A Assignment
- 1. The length of the Harvard Bridge is 2000 feet. Calculate the difference in lengths on a winter day, when the temperature is $-20^{\circ}F$ and a summer day when the temperature is $80^{\circ}F$. Use $C_{L} = 6.0 \times 10^{-6}$ per °F for the coefficient of linear expansion for steel.
- 2. A surveyor's 100 ft. steel tape is correct at a temperature of 65°F. The distance between two points, as measured by this tape on a day when the temperature is 95°F is 86.57 feet. Find the true distance between the points. Use $C_{\rm L}=6.0 \times 10^{-6}$ per °F.
- 3. A steel container holds 100 cubic inches of liquid at 80°F when filled to a certain mark. As the liquid is heated to $180^{\circ}F$, it expands and occupies 110 cubic inches of volume. Find the volumetric expansion coefficient C_V for this liquid. Assume that the volume of the metal container does not change.

2 - Science Fundamentals - T.T.3

5 - Heat & Thermodynamics


-4 - Expansion of Gases - Gas Laws

O.O INTRODUCTION

In this lesson we will discuss the expansion of gases.

1.0 INFORMATION

When a gas undergoes expansion or an increase in volume then work is done by the gas. This may be easily illustrated by means of a cylinder fitted with a piston which allows no leakage and which is loaded with a number of weights as shown below.

The number of weights on top of the piston determines the pressure of the gas in the cylinder. Now, if we want the gas to expand we have to reduce its pressure and we can do this by removing weights from the top of the piston. As some weights are removed from the top of the piston the gas will expand, pushing the piston and the remaining weights upward and so does work in lifting these weights. If we take volume and pressure readings as we remove the weights one at a time, we can plot the expansion curve "A" - "B" of the gas as is shown above.

Should we on the other hand add weights to the piston when the latter is in position "B" then we will compress the gas in the cylinder again and the descending weights would do work on the gas.

We shall now define the ratios of expansion and compression.

Ratio of Expansion = Volume at end of Expansion Volume at beginning of Expansion

Ratio of Compression = $\frac{\text{Volume at beginning of Compression}}{\text{Volume at end of Compression}}$

It should be noted that both ratios give a value greater than unity, since the larger quantity is in the numerator.

1.1 Gas Laws

A perfect gas is a gas which obeys Boyle's law and to which Joule's law of energy is applicable. Both these laws shall now be dealt with below.

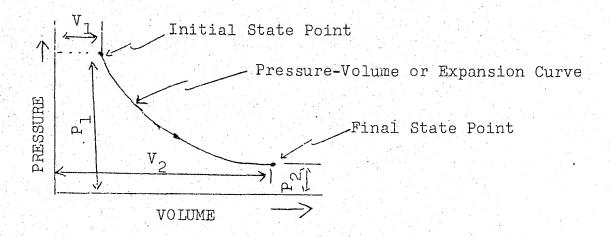
"Boyle's Law": The volume of a given mass of a perfect gas varies inversely as the absolute pressure when the temperature is kept constant.

The above definition can be expressed algebraically as follows:

$$V \sim \frac{1}{P}$$

where P = the absolute pressure of the gas
V = Volume occupied by the gas when the pressure is
equal to P.

By introducing a constant = C we can write the above expression in form of a formula as follows:


$$V = \frac{C}{P}$$
 (1) or $V \times P = C$ (2)

The above formula shows that the product of the absolute pressure and volume of a given quantity of gas is constant when the temperature does not change.

Let a quantity of gas at pressure P₁ and volume V₁ change its pressure and volume in a cylinder (expansion) without change of temperature.

Let P2 and V2 be the final pressure and volume respectively.

This can be illustrated by the following pressure - volume curve.

Then anywhere on this expansion curve

$$PV = C$$
••• $P_1V_1 = C$ and $P_2V_2 = C$
and therefore
$$P_1V_1 = P_2V_2 \qquad (3)$$

Equation (3) is a useful working form of Boyle's law as it avoids the necessity for calculating the value of the constant C.

It is important to remember that volumes $V_1 \notin V_2$ must be expressed in identical units and the same applies for pressures $P_1 \notin P_2$ when using equation (3).

Sample Problem:

Four cubic feet of a gas at an initial pressure of 120 psia expand at constant temperature until the volume is 20 Ft3. Find the final pressure in pounds per square foot.

Solution:

According to Boyle's law

$$\begin{array}{ll} P_1 V_1 = P_2 V_2 & \text{and by transposing we get} \\ P_2 = \frac{P_1 V_1}{V_2} & \text{where } P_1 = 120 \text{ psia} = \frac{120}{144} \text{ PSF abs.} \\ V_1 = 4 \text{ Ft}^3 & \\ V_2 = 20 \text{ Ft}^3 & \end{array}$$

$$P_2 = \frac{120 \times 4}{144 \times 20} = 0.167 \text{ PSF abs.}$$

"Charles' Law": The total volume of a given quantity of gas varies directly as the absolute temperature when the pressure is kept constant.

This can be expressed algebraically as follows:

where $V = \text{total gas volume in } Ft^3$ $T = \text{gas temperature in } ^\circ F \text{ abs.} = 460 + ^\circ F$

The above expression can be written in an equation form as follows:

$$V = TC^{1} \qquad (4)$$

where Cl is a constant

However, equation (4) can also be written in a more useful way and namely

$$\frac{\mathbf{v}_1}{\mathbf{T}_1} = \frac{\mathbf{v}_2}{\mathbf{T}_2} \tag{5}$$

It should be remembered that volumes $V_1 \not\in V_2$ must be expressed in identical units. Also Temperatures $T_1 \not\in T_2$ must be both expressed in °F absolute when using equation (5)

Sample Problem:

Ten cubic feet of gas at 100°F is heated up to 200°F while kept at a constant pressure. Find the new volume that the gas occupies when heated.

Solution:

Using Charles' law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 and by transposing we get $V_2 = \frac{T_2}{T_1} \times V_1$ where $V_1 = 10 \text{ Ft}^3$ $T_1 = 100^{\circ}\text{F} = (460+100)^{\circ}\text{R} \text{ abs.}$ $T_2 = 200^{\circ}\text{F} \text{ 2} (460+200)^{\circ}\text{R} \text{ abs.}$

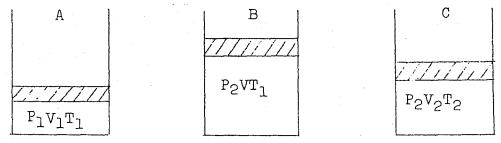
•••
$$V_2 = \frac{660}{560} \times 10 = \frac{11.79 \text{ Ft}^3}{1}$$

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -4 Expansion of Gases Gas Laws
- A Assignment
- 1. a) Define ratio of expansion
 - b) Define ratio of compression
- 2. a) Define "Boyle's Law".
 - b) An air receiver has an internal volume of 100 Ft³. Calculate the pressure in the receiver when 600 Ft³ of air at 14.7 psia are pumped into the receiver. Assume that the air receiver was initially filled with air at 14.7 psia.
- 3. a) Define "Charles' Law".
 - b) Find the volume of a gas that initially occupied 30 Ft³ while at 80°F when it was heated to 500°F. Assume that the pressure remained constant.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -5 Expansion of Gases Characteristic Equation of a Gas

O.O INTRODUCTION

In this lesson, we shall continue discussing gas laws and the work done by expanding gases.


1.0 INFORMATION

In actual practice the pressure, volume and temperature of a gas may all change at once. In this case, because of pressure changes, Charles' Law will not apply, and, because the temperature changes, Boyle's Law will not apply. On account of this, we require some principle by which to treat this so common and important case.

Let's assume that this change in state is taking place in two stages:

- (a) By a change according to Boyle's Law, followed by
- (b) A change according to Charles' law.

Let us consider a given quantity of a perfect gas at pressure P_1 , volume V_1 , and temperature T_1 , in a cylinder "A". The same gas is found later to be in the state P_2 , V_2 , T_2 as in cylinder "C".

We may imagine an intermediate state as having existed, shown at "B". Then, because the temperatures are the same in "A" and "B" the change from "A" to "B" follows Boyle's Law.

Therefore
$$P_1V_1 = P_2V$$

$$V = \frac{P_1V_1}{P_2}$$
(1)

In the change from "B" to "C", the pressure remains the same, whilst the temperature changes; hence Charles' law applies.

In equations 1 and 2, the volume V is the volume in "B" and therefore is the same quantity for both equations. Thus by combining equation 1 and 2, we get

$$\frac{P_1 V_1}{P_2} = \frac{V_2}{T_2} \times T_1 \tag{3}$$

It is obvious, by similar reasoning, that if this quantity of gas underwent a further change to the state P3, V3, T3, the equation 4 could be added to as follows.

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = \frac{P_3V_3}{T_3}$$

We may now express this as follows: The product of the pressure and volume of a quantity of gas divided by its absolute temperature is a constant and we may express this algebraically in the following manner:

$$\frac{PV}{T} = K \text{ or } PV = KT \tag{5}$$

Where K is a constant.

When we considered Boyle's Law and Charles' Law we said nothing about the weight of the gas concerned.

The weight is important in many calculations because it is needed to calculate heat quantities. The weight depends upon the density, that is, upon the specific volume of a gas.

The density and specific volume of a gas are defined as follows:

"Density of a gas or vapour is the weight of unit volume at a given temperature and pressure".

The units usually used for density are pounds per cubic foot (1b./ft3).

"Specific volume of a gas or vapour is the volume of unit weight at some given temperature and pressure".

The units used are usually cubic feet per pound (ft3/lb.)

We will now show that the constant K in equation 5 includes weight of the gas.

Let V_s= specific volume of a particular gas, while P and T are its pressure and temperature.

Then $V = wV_s$ where w = weight of gas used in pounds and since PV = KT

••
$$P_WV_S = KT$$
 and
•• $PV_S = \frac{K}{W}T$ (6)

where $\frac{K}{W}$ is a new constant. If, then, we deal with 1 pound of gas which is represented by V_s , then the value $\frac{K}{W}$ will always be the same for any given kind of gas.

Letting $\frac{K}{w} = R$ R = a new constant then K = wR and substituting in equation 5 we get PV = wRT (7)

We may also write equation 7 in the following form

$$PV_s = RT$$
 (8)

Both equations 7 and 8 are important ones. Equation 8 is called the "Characteristic equation of a perfect gas", and "R" is called the "Characteristic gas constant".

For air R = 53.3

In using equations 7 and 8 careful attention must be given to the units to be used. The following units should be used.

P = pressure in pounds per square foot absolute
T = temperature in OR absolute.
V_s = specific volume of a gas in cubic feet per pound.

V = volume of gas in cubic feet w = weight of gas in pounds.

Sample Problem No. 1

Calculate the temperature after a perfect gas has expanded from P_1 = 120 psia, T_1 = 200°F and V_1 = 1 Ft3 to P_2 = 30 psia and V_2 = 3 Ft $^{\rm s}$.

Solution: Using equation 4 we have

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
 which when transposing gives us

•••
$$T_2 = \frac{P_2 V_2}{P_1 V_1} \times T_1 = \frac{30 \times 3}{120 \times 1} (460+200) = 495°F \text{ abs.}$$

$$= 495 - 460°F = 35°F$$

Sample Problem No. 2

A cylinder containing a perfect gas has an internal volume $V=2.5~{\rm Ft3}$ and a pressure $P_1=2000~{\rm psia}$ when $T_1=60^{\circ}{\rm F}$, calculate the pressure Po in the cylinder when the gas temperature was increased to 100 F.

Using equation 5 and transposing we get Solution:

$$P_2 = \frac{P_1 V_1 T_2}{T_1 V_2}$$
 where $V_1 = V_2 = 2.5 \text{ Ft}^3$

•••
$$P_2 = 2000 \times 2.5 (460+100) = 2000 \times 560 = 2154 \text{ psia}$$
 $(460+60) 2.5 = 520$

Sample Problem No. 3

Three pounds of a gas at 120 psia and $176^{\circ}F$ are placed in a cylinder. What is the volume of the cylinder if R = 53.9

Solution: Using the characteristic gas equation

PV = wRT and transposing we get

$$V = \frac{WRT}{P} = \frac{3 \times 63.9 (460+176)}{144 \times 120}$$

$$= \frac{3 \times 53.9 \times 636}{144 \times 120} = \frac{5.94 \text{ Ft}^3}{144 \times 120}$$

Gample Problem No. 4

The specific volume of oxygen at normal temperature pressure (N.T.P.) is 11.21 Ft3. What weitht of oxygen is contained in a cylinder 5 Ft. long by 5 inches in diameter when the pressure is 1400 psia and temperature is 15°C?

Solution: At N.T.P. the pressure P = 14.7 psia and T = 32°F = (460+32)°R abs. Therefore by applying equation 8 we can first find the gas constant for oxygen.

 $PV_s = RT$

$$R = \frac{PV_{S}}{T} \frac{(14.7 \times 144) \times 11.21}{492} = 48.3$$

Changing Centigrades to Fahrenheit scale, we get

$$15^{\circ}C = (9 \times 15 + 32)^{\circ}F = 59^{\circ}F = (460 + 59)^{\circ}R$$
 abs.
= 519°R abs.

Cylinder volume = Area x length = $\frac{5^2 x}{4 \times 144}$ x 5

$$=\frac{125 \, \text{t}}{1 + 1 + x^{1}} = 0.682 \, \text{Ft}^{3}$$

Applying now equation 7 we can find the weight of oxygen in the cylinder

PV = wRT

• • •
$$w = \frac{PV}{RT} = \frac{(1400 \times 144) \times 0.682}{48.3 \times 519} = \frac{5.5 \text{ pounds}}{148.3 \times 519}$$

D. Dueck

- 2 Science Fundamentals
- 5 Heat & Thermodynamics
- -5 Expansion of Gases Characteristic Equation of a Gas
- A Assignment
- 1. A volume of air, 12.39 Ft³ at 32°F and 14.7 psia is raised to a temperature of 68°F without change of pressure. Find the new volume, and the work done by the air during the expansion in foot-pounds. [Work a P (V₂ V₁)].
- 2. (a) Calculate the volume of 15 pounds of air at 100 psia pressure and at a temperature of 25°C.
 - (b) If this air is now heated to 50°C at constant volume, what will be its new pressure?
- 3. Two pounds of air at 80°F and 100 psia are placed into a space. Find the volume of the space when the gas constant for air is 53.3.

2 - Science Fundamentals - T.T.3

5 - Heat & Thermodynamics

-6 - Graphs

O.O INTRODUCTION

Work in Nuclear Power Plants involves a great quantity of variable data. This data can be presented in table form or on charts in graph form. Tables or specifically, steam tables will be dealt with in a later lesson. This lesson will deal with graph making.

Generally speaking, tables are of great value, but it is difficult to take in all the facts at a glance. In other words, it is not easy, for example, to compare quickly the rate of change of the boiling point with the rate of variation of pressure. As an alternative to tables, a graph can be drawn in which the figures are shown as a line drawn between selected points. After a little practice, it is possible to appreciate the knowledge the table of figures contains by a single glance at a graph of this sort. For detailed accurate calculations, the tables are preferable, but it is the object of this lesson to convey general impressions and an understanding of graphs will be of assistance.

1.0 INFORMATION

Temperature Pressure Graph

In the lesson on definitions, we mentioned that the boiling point temperature of a liquid changes as pressure changes. This fact will be used as an example to illustrate the method by which graphs are constructed.

The following table lists a number of different pressures in psia (pounds per square inch absolute) and the boiling point temperatures for these pressures. The values have been arrived at by specialists in this field through carefully controlled experiments:

Pressure (PSIA)	14.7	100	200	300	400	500	600	800	1000
Boiling Temperature °F	212	327.8	381.8	417.3	444.6	467.0	486.2	518,2	544.6

Mirst Step

Graphs are generally plotted on squared paper, as in Figure 1 which for this case is 10 x 10 squares per cm. As a first step, two lines are drawn, one horizontal which is called the "abscissa", and the other vertical which is called the "ordinate". When referring to both lines, at the same time, we say that they are . "co-ordinates" of the graph.

The variables in this case are pressure and temperature. In order to plot these variables on a graph, we have to lay out suitable scales, one for temperature and one for pressure along the ordinate and abscissa respectively. With few exceptions, the scales always start off from zero at the point where the ordinate and abscissa meet. We notice then from the above table that the range of the pressure scale will have to be from 0 to 1000 psia, and the temperature scale from 0 to approximately 550°F. Obviously, the pressure scale will have to be the longer one, therefore, we use the line along the longer side of the sheet of Figure 1.for pressure and let us say that we designate it as the horizontal line or abscissa.

In this particular case, a distance of 2 cm for 100 psi has been used since the total length of scale thus fits conveniently along the sheet.

Similarly, 2 cm. for 100°F works out as a convenient length on the vertical temperature scale but we have to extend it to 600°F in order to be able to plot the 544.6°F figure.

Second Step

Now that we have established scales on the squared sheet, we can proceed to the second step, figure 2, and that is to plot the pressure-temperature points.

Referring to the above table, the first pressure value is 14.7 psia. Select the point along the horizontal scale corresponding with 14.7 psia and erect a vertical dotted line. The boiling temperature for this pressure is 212°F.; select the point on the vertical scale corresponding to this temperature and draw a dotted horizontal line. The point where these two dotted lines intersect is one point on the graph. Mark it with an X. Continue this process for the remaining set of values and the graph is beginning to take shape with a series of X's as in Figure 2.

Third Step

Connect all the X's with a smooth curve as shown in figure 3. This new line shows the relationship between pressure and temperature and can be used to find the temperature of the boiling point at any pressure by running vertically from the pressure chosen, so

		Transfer Andrew													
77	GRAFY.	E1641171											The state of the s		2000
															800
															8
															600
															500 T. IM P.S.
															400
															300
													. 11	Tilla:	2002
													151		001
	8	3	60										80		0
			200		4		<i>3</i> .4.	7.2.5	Ç.€.	72	γ3 	7			10

the curve and then horizontally to the temperature line. The point on the temperature line will indicate the temperature of boiling point for the pressure chosen.

The dotted lines are used in this example for clarity but normally they are omitted when using squared paper.

In science and engineering it is very common to compare other variables in this way and the same method may be used to compare temperature and heat as will be illustrated in the next lesson.

D.G. Dueck

500 GO 100 GO 10	V	PRESSURE		DAD STER																		
	1	M	474	25.0																	10	
$\frac{\partial w}{\partial w} = \frac{1}{\sqrt{2}} \frac{\partial w}{\partial w} = \frac{1}{$	£ 7.7	PERMIUR	3	URE 2 -																	300	
$\frac{\partial w}{\partial w} = \frac{1}{\sqrt{2}} \left(\frac{\partial w}{\partial w} - \frac{1}{\sqrt{2}} \right) \left(\frac{\partial w}{\partial w} - \frac{\partial w}{\partial w} - \frac{1}{\sqrt{2}} \right) \left(\frac{\partial w}{\partial w} - $		TEM		F16.																	C	
500							7														18	
500																					8	
$\frac{\omega}{\omega}$																					7.	
$\frac{500}{500} = \frac{1}{100} = $,													8	-
\$200																					Ø	
\$200																					8	The
600 500 500 500 500 500 500 500																					8	7
\$200 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					8	رز.
\$200																						77
									>												8	× .
																					1	4
										1											13	
											\(\frac{1}{2}\)	<u>/</u>									8	
																						·
					S					8		0			\ \ !	大百				- ;	 <u> </u>	
70 ANG TO STATE					9		56			111	, I	30 731	72	y _a y	∄d	J.V	31	-	Ü	 - 		

	A.F. Dare										
) .									8	
TENTARIUME BY.		不				-				5	
77.3 -	1									Ġ	•
TEMPLANTE	m S									8	
										3	
										8	
			X -							# &O	
			14							500 KL 18 85	
											· · · · · · · · · · · · · · · · · · ·
				<u> </u>						2400 265 55 5	
										2	1
				l Y						00E	
							1				
					Tale Hill					8	
									1.11.11		
										8	
						7	*				
	3		ş	8	7,1/2,1		288	, te		O	
				1140	78172	व अला	774				

- 2. Science Functionentals T.T.3
- 5 Heat and Thermodynamics
- -б Graphs
 - A Assignment
- 1. a) Define abscissa.
 - b) Define ordinate.
 - c) Define co-ordinates.
- 2. The following table lists various temperatures (in ascending order) opposite which are given the pressures at which saturated vapor conditions for water exist.

Temperature °F	32	150	2501	350	400	450	500
Pressure	0.1	3.7	29.8	134.6	247.2	422.6	680.8

Plot the graph for these values. Label the scales.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -7 Steam and Water

O.O INTRODUCTION

In this lesson we will discuss steam and water behavior, in terms of pressure, temperature and enthalpy and illustrate their relationship in graphical form.

1.0 INFORMATION

You will recall from the lesson on definitions, we defined enthalpy as heat energy and that it is measured in Btu's/lb. Also in that lesson we defined terms such as sensible heat, saturated water, latent heat of vaporization, saturated steam and superheat. We can now illustrate in graphical form how these quantities of heat vary as temperature and pressure vary.

However, before we begin there are two things we should take note of at this point:

1. In all calculations involving steam power plants, conventional and nuclear, enthalpy is arbitrarily taken to be zero for water at 32°F.

You will recall that previously we had mentioned that in order to produce ice, we had to extract latent heat of fusion and that if we extract still more heat, we will eventually arrive at an absolute zero temperature. For steam and water in steam power plants we disregard ice and melting phases of water since they are insignificant to their operation.

2. The specific enthalpy of steam is not the same as the specific enthalpy of water. 1 lb. of steam does not require quite as much heat as 1 lb. of water to raise it 1°F.

Temperature-Enthalpy Graph

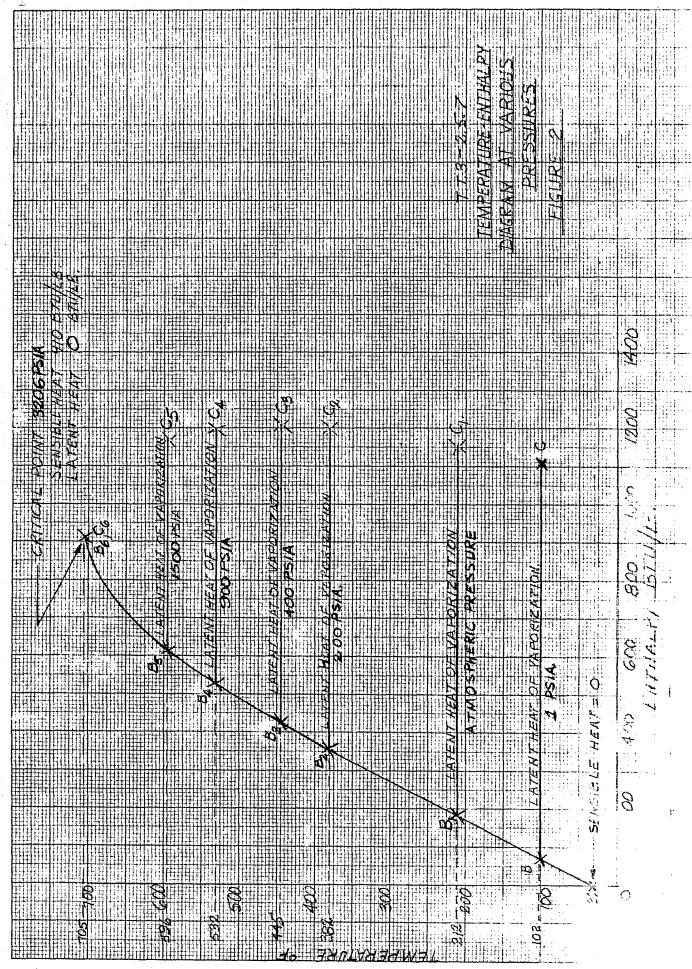
All the properties of steam and water which we are going to discuss in the following pages can be found in steam tables. These will be discussed in a later lesson.

Now then, to proceed with the graphical representation showing the relationship of temperature, enthalpy and pressure construct what is called a temperature-enthalpy graph. The steps involved are similar to the ones outlined in the lesson on graphs We again let our temperature scale say $0-700^{\circ}\text{F}$, be the ordinate and this time the abscissa will be the enthalpy scale from say 0-1400 Btu/lb. as is shown in Figure 1.

Assume we begin with 1 lb. of water at 32°F and at atmospheric pressure. As no heat has as yet been added one of the points on the graph will be 32 on the temperature scale, and 0 on the enthalpy scale. This is shown at point 'A'.

Next, we commence to add heat till the water is heat "saturated" at 212°F. As we stated previously, this is "sensible heat" and the quantity involved at atmospheric pressure is 180 Btu. This establishes a point 'B' where the broken horizontal line at 212°F intersects with the broken vertical line at 180 Btu/lb.

All the water is now at 212°F. To change the state of water to steam, we have to add the latent heat of vaporization as defined previously. With the pressure still being atmospheric the temperature will remain constant during this process. We find we have to add 970 Btu, to completely evaporate one lb. of water; we now have heat "saturated" steam with a total enthalpy of 180 + 970 = 1150 Btu for 1 lb. This establishes another point 'C' on the graph - i.e. where the horizontal broken line at 212°. F intersects with the vertical broken line at 1150 Btu/lb.


If we now join points A & B and points B & C with solid lines we have a graph ABC representing diagrametically the job done in adding 1150 Btu to 1 lb. of water at 32°F, at normal atmospheric pressure resulting in the generation of 1 lb. of heat saturated steam at 212°F.

Temperature Enthalpy Diagram at Various Pressures

In earlier lessons, we mentioned that boiling point temperature varies with pressure. Figure 2 is a temperature-enthalpy diagram which has been plotted from data obtained from steam tables. This graph shows that the higher the pressure, the higher the temperature at which water will start boiling.

However, in addition to this fact, you will notice that the higher the pressure, the greater the quantity of sensible heat required to bring the water to its boiling point temperature. On the other hand, the higher the pressure, the smaller is the quantity of latent heat of vaporization required to convert all the water to saturated steam. That is, the line BC gets shorter and shorter as the pressure gets higher and higher, until the pressure reaches 3206 psia which is called the critical point where the latent heat of vaporization required to convert water

			72
			EMPERATURE SKIMB
			TT 3- C RANGE GRAPH FIGUET
		Z Z	764
		N KEEN W	
		(MT/4)	
		SKTW	004
	H SEN		1200
	7 + 7	14 35 35	
	Mark P.CO.	1 7 TGM	69
	1878 B	247	84
	HEN!	17.47.7	
	ty = gen	LANTENT HEAT OF VA	or he
	ENTER	CHT HEI	625 #4.4 400 £ N:126
	الألة المساولة فالأسوان ووائلة ومواجو والرفوق أرمون وبراء من فدريسونها والأراب واستخذ يدر	######################################	4-55451 BLE #4.47
			100 CO
160	200 200 400	3,000	32: (4
	3 & 30 50 JAN 200	74 CV 744 777 778	

to saturated steam is equal to zero. When water at this pressure reaches 705°F, it changes instantly into steam without the addition of any further heat. For pressures and temperatures equal to or higher than the critical point there is no visible difference between liquid and vapor. There are no steam plants in Canada (conventional or nuclear) operating at these high pressures and this information is given as a point of interest only.

Temperature Enthalpy Diagram for Superheat

So far we have discussed the formation of steam only up to the point where it is saturated vapor - i.e. still at the boiling point temperature, but containing no water droplets. Boilers in our nuclear stations produce steam at or near saturated vapor conditions. You can see that as soon as some of the heat is extracted from the steam as it passes through a turbine, that water droplets will start to form bringing the vapor into the wet steam region. This is the beginning of condensation, Droplets of water passing through a turbine are undesirable because they will erode the blades.

Therefore, it is desirable to add more heat to saturated steam (i.e. raise its temperature above boiling point temperature) so that a lot of energy can be extracted from it before it starts to condense. As we had defined previously, any addition of heat to steam which is already saturated is called superheat and the temperature above saturation temperature for a certain pressure is called degrees of superheat.

To see a graphical illustration of this, refer to figure 3. You will notice that the line ABC is exactly the same graph as in figure 1. Let us say we want to have superheated steam at 600°F and still at atmospheric pressure. The total enthalpy of 1 lb. of steam under these conditions is 1333 Btu. This is plotted as point D'. If we now join CD with a solid line, we have the graph ABCD which represents the work done to raise 1 lb. of water at 32°F and 0 Btu/lb. to 600°F and 1333 Btu/lb. Theoretically, this is the amount of work we should also get out of 1 lb. of steam as it passes through a steam engine or turbine if the machine were 100% efficient.

We started this lesson by stating that we wanted to show the relationship between pressure, temperature and enthalpy for steam and water. This relationship can now be illustrated in figure 4 which combines figures 1, 2 and 3.

You will notice that the solid line from $32^{\circ}F$, to B_6 is the same as that shown in figure 2. The area to the left of this line represents the liquid phase of water.

Referring back again to figure 2, all the points marked 'C' have also been plotted on figure 4, but they have been joined with

													77	Ĭ		
													TEMPERATURE TITULEN	HABINA TOR SULLAIEAN FIGURE 3		
												10	1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1	不らる		•
												<i>(</i> 2)	ERATI	FIGURE		
												7.7	TEMP	FIER		
														-¥		
																•
															Cı.	; ; ;
		F.													K	3
-						ZP377									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) i
				7 = 1			- S-7	75	#	Ť					22.	
			7	PERMEAT											C400/	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. S						AZIO	j D				<u>0</u> /	
			7 E.D.							PORI ZAZION				4	8 7 7 7 8 8 1 7 1 8 1 8 1 8 1 8 1 8 1 8	i i
			731121	TEWT						2				-	3.	
			SILPI	77 ± 14						EAT O	1/4					.
			RAHY,30 IIS AV ENALWOO.	D = SENSIBLE HEAT FLATENT						LATENT HEAT OF	A MOST CATE			· ·		•
			E WOO	SENSIF						7777						
			HEAT	† A											•	
			FOF4:	POINT						(B)	2000		i Line and the second s			•
										i		TAX SO	S. S	<u> </u>		
	3		000	S. C.	200		3	4	9	216	200	S	3	Tiへ 対	•	
						#/4	<i>=13/</i> 72			6						

	4
	SUPERITE 4
TEMPERATURE ENTING	SUPERTY A
A WELL	
	8
	00/1
	X
CONTRACTOR OF THE STATE OF THE	
BOOK THE THE STATE OF THE STATE	7,200
BOOK TIME TO BOOK TANKE TO STANKE TO	
) (0)
	1/18
70 00 0 V	88 177
\$ 12 Nove \$	
RITHCALL POINT 321, AND POINT 321, A	600 E117/1/AL F1
	60
To the state of th	1 1
	\$
35, 25, 25, 25, 25, 25, 25, 25, 25, 25, 2	
7541	CO 2
35 X X X X X X X X X X X X X X X X X X X	
8 8 8 18 18	20
VEMPERS OF THE SECOND OF THE S	

a solid line and this line combined with line 32°F,B6 forms a horseshoe-shaped curve. The whole area under this horseshoe-shaped curve represents the wet steam region where you would find droplets of water in steam. Any point along line 32°F,B6 represents saturated liquid; any point along line C1C6 represents saturated steam.

We have said that adding heat to saturated steam produces superheated steam, therefore, any point to the right of the horseshoe-shaped curve would represent superheated steam. Obtaining our information from steam tables, we can thus plot lines of superheated steam for the various pressures shown. Figure 4 shows the superheated region for temperatures up to 800°F. Modern conventional steam power plants generally operate with steam at 1000°F to 1100 °F.

Figure 4 represents only a skeleton of a normal temperature enthalpy diagram. But if one had access to a completed temperature-enthalpy diagram, then knowing two of either pressure, temperature or enthalpy of steam, one could, determine where on the diagram this condition would appear and how much work one could expect to obtain from the steam.

A more detailed diagram than the temperature-enthalpy diagram and one which is more commonly used for steam power plant work is the "Mollier Chart" which will be covered at the T.T.1 level.

D.G. Dueck

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -7 Steam and Water
- A Assignment
- 1. In what way does pressure on water affect:
 - (a) the quantity of sensible heat required?
 - (b) the quantity of latent heat of vaporization required?
 - (c) the boiling point temperature?
- 2. Given the following data, plot the temperature-enthalpy diagram:

Pressure (PSIA)	1	14.7	200	400	900	150	00	3	206
Temperature °F	102	212	382	445	532	596	800	705	800
hp Btu/lb.	70	180	355	424	527	611		910	
hg Btu/lb.	1105	1150	1199	1204	1197	1168		910	
h Btu/lb.		-			-	-	1362		1251

label the liquid phase, saturated liquid line, wet steam region, saturated vapor line, superheat region.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -8 Steam Tables

O.O INTRODUCTION

In this lesson we will discuss the arrangement of tables listing the properties of steam and water covered in the lesson on steam and water and some of the ways in which these tables are used in practice.

1.0 INFORMATION

1.1 Steam Tables

The properties of steam and water are arranged in tables called "steam tables". The ones most commonly used on this continent are "Thermodynamic Properties of Steam" by J.H. Keenan and F.G. Keys, published by John Willey & Sons, Inc., New York. However, these are too extensive to be reproduced here. Included in this lesson are tables 1 to 3 which are not as extensive as the Keenan & Keys tables and not quite as accurate but adequate for purposes of this course.

The first table has the properties arranged against temperature in degrees Fahrenheit for saturated water and saturated steam. In the first column are the values of steam and water temperature (in degrees F) against which, the other properties are listed.

The next two columns give the corresponding saturation pressure (in absolute figures); one gives values in psia, while the other one gives values in inches mercury ("Hg.) Then there are three columns giving specific volume (i.e. cubic feet per lb. of water) of saturated liquid v_f , of liquid and vapor mixture v_f

and of saturated vapor v_g respectively. Similarly there are three columns for enthalpy - one gives enthalpy of saturated water (above 32°F) h_f , the second one enthalpy required to change saturated water to saturated steam, which is really latent heat of vaporization, the third one gives the total enthalpy of saturated steam, h_g . The last set of three columns give the entropy of

saturated water s_f , entropy change during evaporation s_f and entropy of saturated steam s_g . The term entropy has not been mentioned previously. It is a property of steam and water and will be covered in detail at the T.T.2 level. For the moment just remember that the information on entropy is included in steam tables.

In looking over table 1 notice that:

1.
$$v_g = v_f + v_{f_g}$$

$$h_g = h_f + h_{f_g}$$

$$s_g = s_f + s_{f_g}$$

2. The values given in steam tables are for 1 lb. of water or steam only. This applies to table 1 as well as to tables 2 and 3.

Table 2 has the same properties listed in table 1 except that the pressure and temperature columns are interchanged thus making it easier to select values corresponding to given pressures.

Table 3 lists the properties of superheated steam against pressure and temperature. The first column lists the steam pressure in psia and corresponding saturation temperature. Across the top of the table is listed the temperature of superheated steam. Under each temperature and opposite each pressure are listed the specific volume (v) enthalpy (h) and entropy (s).

In any of the tables, the properties at values of pressure and temperature falling in between the listed values are found by interpolation.

1.2 <u>Sample Problem No. 1</u>

How much heat is required to warm 3200 lb. of water from 70°F to 180°F?

Difference in enthalpies (Table 1) is 147.9 - 38.0 = 109.9 STU/lb. or just take the difference in temperatures

$$180 - 70 = 110 BTU/1b$$
.

Then

110 x 3200 = 352,000 BTU is the total heat required.

1.3 Sample Problem No. 2

How much heat is needed to convert one poud of feed-water at 200°F into dry saturated steam at 135 psi gauge (150 psi abs)?

Enthalpy of feed water at 200°F (Table 1) is 168.0 BTU/lb.

Enthalpy of dry saturated steam at 150 psia (Table 2) is 1193.8 BTU/1b.

Difference in enthalpies

1193.8 - 168.0 = 1025.8 BTU/1b.

1.4 Sample Problem No. 3

How much heat would be needed to convert one pound of feedwater at 300°F into superheated steam at 700 psia and 900°F?

Enthalpy of the water is 269.6 BTU/lb.

Enthalpy of the steam (Table 3) is 1458.2 BTU/lb.

Heat needed

1458.2 - 269.6 = <u>1188.6 BTU/lb</u>.

1.5 Quality of Steam

Steam exhausted from condensing turbines - like the NPD and the Douglas Point turbines - usually consists of a mixture of saturated steam and saturated water. This mixture, commonly termed "wet steam" must be measured according to its amount of water and steam content in order to determine its energy or enthalpy content. This is done by stating either percent moisture or percent quality. These terms are defined as follows:

y = % moisture = wt. of saturated water in mixture in 1b x 100 total wt. of saturated water and steam

x = % quality = wt. of saturated steam in mixture in 1b x 100 total wt. of saturated water and steam

Percent quality could just as well have been called per cent steam, but custom has fixed on the former term. Note that for any mixture

% = 100 + % = 1000 + % = 10000 + % = 10000 + % = 10000 + % = 10000 + % = 10000 + % = 10000 + % = 10000 + % = 10000 + % =

Knowing the make up of the mixture by either of the foregoing percentages, it is possible to determine its volume and enthalpy with the aid of steam tables as follows:-

(a) when the quality is given

Enthalpy of wet steam =
$$\frac{(100-x)}{100} h_f + \frac{x}{100} h_g$$

= $h_f + \frac{x}{100} (h_g - h_f) = h_f + \frac{x}{100} h_f$ BTU/lb. ... (2)
where h_f = enthalpy of saturated water h_g = enthalpy of saturated steam h_{f_g} = heat of vaporization

(b) when moisture is given

Enthalpy of wet steam =
$$\frac{y}{100} h_f + \frac{(100-y)}{100} h_g$$

= $h_g - \frac{y}{100} (h_g - h_f) = h_g - \frac{y}{100} h_f$ BTU/lb. ... (3)

Similarly to find the specific volume,

Specific volume of wet steam =
$$v_f + \frac{x}{100} (v_g - v_f) ft^3 / lb$$
. ... (4)
= $v_g - \frac{y}{100} (v_g - v_f) ft^3 / lb$ (5)

where v_f = specific volume of saturated water v_g = specific volume of saturated steam

1.6 <u>Sample Problem No. 4</u>

Steam having a temperature of 400°F is wet and has a quality of 80 per cent. Determine its enthalpy and specific volume.

From Table 1 at
$$^400^{\circ}$$
F, $h_f = 375.0$ BTU/1b.
 $h_{fg} = ^{826.2}$ BTU/1b., $v_f = 0.01864$ ft³/1b, $v_g = 1.8632$ ft³/1b.
Enthalpy of wet steam $h = h_f + \frac{x}{100} h_f = 375.0 + \frac{80}{100}$ 826.2
 $= \frac{1.036.0}{100} \frac{\text{BTU/1b}}{\text{BTU/1b}}$.

Specific volume of wet steam
$$v = v_f + \frac{x}{100} (v_g - v_f)$$

= 0.0186 + $\frac{80}{100}$ (1.8632 - 0.01864) = 1.4936 ft³/1b.

This can also be solved by using the moisture, y = 100 - x

$$= 100 - 80 = 20\%$$

1.7 Sample Problem No. 5

Steam exhausted from a condensing turbine is wet and has 5% moisture. If temperature in the condenser is 80°F, determine the following:

- (a) Enthalpy of the steam
- (b) Pressure in the condenser

$$h = h_g - y_{100} h_{f_g} = 1095.8 - \frac{5}{100} \times 10^{14} + 8 = 10^{14} \cdot 10^{14} = 10^{14} = 10^{14} \cdot 10^{14} = 10^{14} = 10^{14} \cdot 10^{14} = 1$$

For saturated water and steam, pressure corresponding to 80°F is 0.5067 psi (Table 1), or approx. 1.0" Hg. abs.

1.8 Density and Specific Volume

The specific volume of steam is often used in calculations relating to the density of steam, that is, the weight (w), in pounds, of a cubic foot of steam. The density is reciprocal of the specific volume at the same pressure, that is,

$$w = \frac{1}{v}$$

In other words, the product of w and v is always 1. The value of w increases as the pressure increases, which is natural enough, as the steam becomes denser under increased pressure.

1.9 <u>Sample Problem No. 6</u>

Determine the pressure and density of dry saturated steam at 70°F.

From Table 1 at
$$70^{\circ}$$
F, p = 0.3628 psia, $v_g = 868.9 \text{ ft}^3/1\text{b}$.

$$w = \frac{1}{v} = \frac{1}{868.9} = 0.0011 \text{ lb/ft}^3.$$

D. Dueck

STEAM TABLES

Absolute Pressure — atmospheric pressure — vacuum. Barometer and vacuum columns may be corrected to mercury at 32° F. by subtracting, $0.00009 \times (t-32) \times$ column height, where t is the column temperature in ${^{\circ}}$ F. 1 inch of mercury at 32° F. = 0.4912 lb./sq. in.

Example:

Barometer reads 30.17 inches at 70°F. Vacuum column reads 38.26 inches at 80°F. Abs. press. — (30.17 — 0.00009 × 38 × 30.17) — (28.26 — 0.00009 × 48 × 28.26) = 1.93 inches of mercury at 32°F.

Saturation temperature (from table) — 100°F.

Table 1. Saturated Steam: Temperature Table

			T	able 1.	Saturated	Steam:	Tempe	rature Ta	ble			
		e Pressure	871	crric Vo			ENTRAL	PY ·		ENTROP		
Temp. Fabr.	Lb. per Sq. In.		Sat. Liquid	Evap.	Sat.	Bat.		Sat.	Sat.		Sat.	Temp.
t t	р	02 F.			_	Liquid		Vapor	Liquid	Evap.	Vapor	Fahr.
	- Р			Vig	Yg	pt	h _{fæ}	hg	8{	Sig	8g	t
12	0.0886	0.1806	0.01602	3305.7	3305.7	0	1075.1	1075.1	0	2.1865	2.1865	33
84	0.0961	0.1957	0.01602			2.01			0.0041	2.1755	2,1796	34
86	0.1041	0.2120	0.01802			4.03	1072.9		0.0082	2.1645	2,1727	36
38	0,1126	0.2292	0.01602	2632,2	2632,2	6.04	1071.7	1077.7	0.0122	2.1533	2.1655	28
40	0.1217	0.2478	0.01602	2445.1	2445.1		. 1000	1000				
42	0.1315	0.2677	0.01602			8.05 10.06			0.0162	2.1423	2,1585	40
44	0.1420	0.2891	0.01602			12.00			0.0203 0.0242	2.1314 2.1207	2.1517 2.1449	42 44
46	0.1532	0.3119	0.01602			14.07			0.0242	2.1102	2.1384	46
. 48	0.1652	0.3364	0.01602	1829.9		16.07			0.0322	2.0995	2.1317	. 48
\$ 0	0.1780	0.3624	0.01602	1704.9	17040	10.00						
62	0.1918	0.3024	0.01602			18.07			0.0361	2.0891	2.1252	50
54	0.2063	0.4200	0.01603			20.07 22.07			0.0400	2.0786	2.1186	52
56	0.2219	0.4518	0.01603			24.07			0.0439 0.0478	2.0684 2.0582	2.1123 2.1060	54 56
58	0.2384	0.4854	0.01603			26.07			0.0517	2.0479	2.0996	58
		0.5014							•.0021	02.0	2.0000	
60 62	0,2561 0,2749	0.5214 0.5597	0.01603			28.07			0.0555	2.0379	2.0934	50
64	0.2749	0.6004	0.01604 0.01604			30.06			0.0594	2.0278	2.0872	62
46	0.8162	0.6438	0.01604			82.06 34.06		1088.9 10 89 .8	0.0632	2.0180	2.0612	54 66
68	0.8888	0.6898	0.01605			36.08			0.0670 0.0708	2,0082 1,9983	2.0752 2.0691	68
								×0.00.0	0.0100	1.5500	#.UU#1	***
70	0.3628	0.7887	0.01605			38.08			0.0745	1.9887	2.0682	70
72 74	0.8883 0,4153	0.7906	0.01606			40.04			0.0783	1.9792	2.0575	73
76	0.4440	0,8456 0,9040	0.01606 0.01607			42.04			0.0820	1.9697	2.0517	74
78	0.4744	0.9659	0.01607			44.08 46.08		1094.1 1094.9	0,0858 10,0895	1.9603 9508	2.0461 2.0403	76 78
					-, -,-			.051.5	10.0000	2.630	2 1740.7	.,
	•											
36	0.5067	1.082	0.01607	633.7	633.7	48.02	1047.8	1095.8	0.0932 1	0114		
82	0.5409	1.101	0.01608	595.8	595.8	50.02		1096.6			2.0347 2.0290	80 83
84	0.5772	1.175	0.01608	560.4	560.4	52.01		1097.5			2.0236	84
84	9.6153	1.253	0.01609	527.6	527.6	54.01		1098.4			2.0181	86 .
64 .	0.6555	1.835	0.01609	497.0	497.0	56.00		1099.2			2.0126	88
PO	0.6980	1.421	0.01610	468.4	468.4		10101					
22	0.7429	1.513	0.01611	441.7	441.7	58.00 59.99		1100.1 1100.9			2.0073	90
94	0.7902	1.609	0.01611	416.7	416.7	61.98		1101.8			2.0018 :.9966	92 94
94	0.8403	1.711	0.01612	398.2	398.2	68.98		1102.7			.9915	96
98	0.8930	1.818	81810.0	371.3	871,3	65.98		1103.5			.9863	98
100	0.9487	1,932	0.01419	210.0	200							
102	1.0072	2.051	0.01613 0.01614	850.8 381.5	850.8	67.97		1104.4			.9812	100
104	1.0689	2.176	0.01614	313.5	881.5 813.5	69.96 71.96		1105.2			.9760	103
104	1.1338	2.308	0.01615	296.5	296.5	78.95		1106.1 1107.0			.9711	104
108	1.2020	2.447	0.01616	280.7	280.7			1107.9			.9662 .9615	10 6 108
444	1.004	0.504							312 200 1	1		700
116 113	1.274 1.350	2.594	0.01617	265.7	265.7			1108.8			.9567	110
114	1.380	2.749 2.909	0.01617 0.01618	251.6	251.6			1109.6			.9518	113
116	1.512	3.078	0.01619	238.5 226.2	238.5 226.2			1110.5			.9471	114
118	1,600	3.258	0.01620	214.5	214.5			1111 .4 1112 .3			.9424	114
					***	50.72	. VAU. T		0.1010 1	.7767 1	.9377	118
130	1.692	3.445			203.47			1113.2	0.1645 1	7687 1	.9332	120
193 184	1.788	3.640			193.18			1114.0	0.1679 1.	7606 1	.9285	122
134 136	1.889 1.995	8.846 4.042	0.01400		183.46			1114.9			.9240	124
128	2.105	4.062 4.286			174.28 165.72			1115.7			.9194	126
			~,~, UAT	.50.70	AUU.1 2	98.90	1020.7	1116.6	0.1782 1.	.7368 1	.9150	128
180	2,221	4.522			157. 57			1117.4	0.1816 1.	7289 1	.9105	130
121	2.343	4.770			149.85		1018.3	1118.2	0.1849 1.	.7210 1	.9059	132
184	2.470	5.029			142.61			1119.1		7134 1	.9017	134
186 188	2.608 2.742	5.300			135.75			1119.9			.8973	136
~ ~	4.12	5.583	0.01628	129.26	129,28	105.88	1014.9	1120.8	0.1950 1	6980 1	.8930	135
140	2.887	5.878	0.01629	123.16	123.18	107.88	1013.7	1121.6	0.1084 1.	.6904 1	.8888	140
141	3.039	6.187	0.01630		117.39			1122.4			.8845	142
144	3.198	6.511	0.01631	111.88	111.90	111.88	1011.3	1123.2			.8802	144
146	3.368	6.847			106.74			1124.1	0.2083 1.		.8761	146
148	3.586	7.199	0.01633	101.82	101.84	115.87	1009.0	1124.9	0.2116 1.		.8720	146

		PRESSURE	Sreci	ric Volu	MH.	Ex	TEALPY			HTROPT		m -
emp. hr.	Lb. per 8q. In.	ln. Hg. 32 F.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Tem; Fab
ŧ.	DQ. ID.		Al Al	Yie	V _E	hi	hig.	h _g	M	ME	Bg	t
50	2 -1 4	7 100	0.01424	07.10	07.00	117.07			0.0140	1 4520	1 0070	150
12	3.716 3.904	7.566 7.948	0.01634 0.01635	97.18 92.79	97.20 92.81			1125.7 1126.6			1.8679 1.8639	152
84	4.100	8.348	0.01636	88.62	88.64			1127.4			1.8598	154
56	4.305	8.765	0.01637	84.66	84.68			1128.3			1.8560	184
5.8	4.518	9.199	0.01638	80.90	80.92	125.87	1003.2	1129.1	0.2279	1.6241	1.8520	158
60	4.739	9.649	0.01639	77.37	77.89			1129.9			1.8480	160
62 64	4.970 5.210	10.12	0.01640	74.00 70.79	74.02			1130.7			1,8441	161
66	5.460	10.61 11.12	0.01642 0.01643	67.76	70.81 67.78	131.88 133.88		1131.6 1132.4			1,8405 1,8366	164
64	5.720	11.65	0.01644	64.87	64.89	135.88		1133.2			1.8327	164
ro	5.990	12,20	0.01645	62.12	62.14	137.89	996,1	1134.0-	0.2471	1.5819	1,8290	170
72	6.272	12.77	0.01646	59.50	59.52	139.89		1134.9			1.8254	17
74	6.565	13.37	0.01647	57.01	57.08	141.89		1135.7			1.8218	174
76 78	6.869 7.184	18.99 14.68	0.01648 0.01650	54.64 52.39	54,66 53,41	143.90 145.90		11 36. 5 11 3 7.3			1,8181 1,8145	170
										4.		
84 82	7.510	15.29	0.01651	50,26	50.28	147.91		1138.1			1.8108	180
84 84	7.849 8.201	15.98 16.70	0.01652 0.01653	48.22 46.28	48.24 46.80	149.92 151.92		1138.9 1189.7			1.8073 1.8038	181 184
16	8.566	17.44	0.01654	44.43	44.45	153.93		1140.5			1.8003	184
18	8,944	18.21	0.01656	42.67	42.69	155.94		1141.3			1,7967	18
10	9.336	19.01	0.01657	40.99	41.01	157.95	984.1	1142.1	0.2785	1.5147	1.7932	196
23	9.744	19.84	0.01658	39.88	39.40	159.95	982.8	1143.8	0.2816	1.5061	1.7897	19
14. 16	10.168 10.605	20.70 21.59	0.016 59 0.01661	37.84 35.38	87.86 86.40	161.96 163.97		11 43. 5 11 44. 3			1.7862	19-
K	11.057	22.51	0.01662	34.98	35.00	165.98		1145.0			1.7828 1.7793	19
ю	11.525	23.46	0.01663	83.65	33,67	127 00	077 0	1145.8	0.0000	1.4822	1 7780	10
×2	12.010	24.45	0.01665	82.87	83.89	1 67.99 170.01		11 46.6			1.7760 1.7728	20
N	12.512	25.47	0.01666	81.15	81.17	172.02		1147.8			1.7694	20
16	18,031	26.53	0.01667	29.99	80.01	174.08		1148.1			1.7662	20
16 18	13,568 14 128	27.62 28 75	0.01 669 0.01 670	28.88 27.81	28.90 27.83	176.04 178.06		l 148.8 1 140.6			1.7 629 1.7597	20
218 220 225	15.5 17.1 18.9	88 :	0.0167 0.0168 0.0168	7 23.1	4 23.16	188.1 188.1 193.1	4 966,	1153.8	0.316 0.323 0.331	9 1.420	1 1.7440	
220	20.1	78	0.0168	4 19.87	1 19.888	198.3	2 958.1					
235 240	22.8		0.0168	8 17.76	1 17.778	208.2			0.338 0.345			
245	24.9 27.8		0.0169			208.34		1160.4	0.353			
250	29.8		0.0169			218.41 218.48			0.3604 0.3678		2 1.7066	
255	32.	5.8	0.0170	4 12.78	£ 10.7E0						0 1.6995	
260	85.4	13	0.0170			223.50 228.68			0,274			
264	38.5		0.0171	10.86	1 10.878	288.74			0.3817 0.3888			
-	41.8		0.0171			238.84	981.8	1170.6	0.8958			
270		-01		9.31			928.2		0.400*	1.2634		
275	45.4		0.0172		0 0.000	248.94	· ****	1172.1	0.4027			
275 200	45.4 49.2	10	0.0172		4 8.651	349.06	924.6	3 1178.7	0.4096	3 1.2500	0 1.6596	
275	45.4	10 15	0.0172 0.0178	8.01	4 8.651 5 8.082	349.06 254.18	5 924.6 3 921.0	3 1178.7 3 1175.2	0.4096 0.4188	3 1.2500 5 1.2368	8 1.6533	
275 285 290 295 290	45.4 49.2 53.2 57.5 62.1	10 15 5 8	0.0172 0.0178 0.0178 0.0174	8.01 7.44 6.98	4 8.651 5 8.082 8 7.465	249.06 254.18 259.31	3 924.6 3 921.0	3 1178.7 1175.2 1 1176.7	0.4096 0.4166 0.4284	3 1.2500 5 1.2368 1.2237	8 1.6533 7 1.6471	
275 280 285 290	45.4 49.2 53.2 57.5	10 15 5 8	0.0172 0.0178 0.0178	8.01 7.44 6.98	4 8.651 5 8.082 8 7.465 1 6.948	349.06 254.18	3 924.6 3 921.6 1 917.4 5 918.7	3 1178.7 0 1175.2 1 1176.7 1 1178.2	0.4096 0.4188	3 1.2500 5 1.2368 1.2237 1.2107	8 1.6533 7 1.6471 7 1.6409	
275 285 290 295 290 295 200	45.4 49.2 53.2 57.5 62.1 67.0	8	0.0172 0.0178 0.0178 0.0174	8,01 7,44 6,98 6,45	4 8.651 5 8.082 8 7.465 1 6.948 4 6.471	349.06 254.18 359.31 264.45 269.60	3 924.6 3 921.0 1 917.4 5 918.7 9 910.1	3 1173.7 1175.2 1176.7 1178.2 1179.7	0.4096 0.4168 0.4284 0.4302 0.4370	3 1.2500 5 1.2368 1.2237 8 1.2107 0 1.1980	8 1.6533 7 1.6471 7 1.6409 0 1.6350	
275 280 285 290 395 390 305 210	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6	00 55 5 8 1 8	0.01724 0.0178 0.0178 0.01744 0.01744 0.01756	8.01 5 7.44 6 6.98 6 6.45 6 6.01 6 5.61	4 8.651 5 8.033 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628	249.06 254.18 259.31 264.45 269.60 274.76 279.92	3 924.6 3 921.0 1 917.4 5 918.7 9 910.1 3 906.8	3 1173.7 2 1175.2 4 1176.7 7 1178.2 1179.7 3 1181.1	0.4096 0.4186 0.4284 0.4302 0.4370	3 1.2500 5 1.2368 1.2237 3 1.2107 1.1980	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289	
275 280 285 290 295 300 306 310 318	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6	00 55 5 8 1 8 8	0.0172 0.0178 0.0178 0.01744 0.01744 0.0175 0.01760	8.01. 5 7.44: 6.98: 6 6.45: 6 5.61: 6 5.23:	4 8.651 5 8.033 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628	249.06 254.18 259.31 264.45 269.60 274.76 279.92 285.10	3 924.6 3 921.0 1 917.4 5 918.7 9 10.1 3 906.8 1 902.6 3 898.8	3 1178.7 1176.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9	0.4096 0.4186 0.4284 0.4302 0.4370 0.4487	3 1.2500 5 1.2368 1.2237 3 1.2107 1.1980 7 1.1852 5 1.1727 1.1587	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6232	
275 280 285 290 395 300 305 210	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6	00 5 5 5 3 1 8 8 8 0 6	0.0172 0.0178 0.0178 0.0174 0.0174 0.0176 0.0176 0.0176	1 8.01. 5 7.44. 6 8.98. 6 6.45. 7 6.01. 7 6 7.45. 7 7.	4 8.651 5 8.083 8 7.465 1 6.948 4 6.471 4 6.082 0 5.628 9 5.257 7 4.915	349.06 254.18 359.31 264.45 269.60 274.76 279.92 285.10 290.29	5 924.6 3 921.0 1 917.4 5 918.7 9 10.1 6 906.8 9 908.8 9 898.8	3 1173.7 1175.2 1176.7 1178.2 1179.7 1181.1 1182.5 1183.9 1185.3	0.4090 0.4184 0.4284 0.4302 0.4370 0.4437 0.4508 0.4571 0.4637	3 1.2500 5 1.236 4 1.223 8 1.2107 1.1980 7 1.1852 5 1.1727 1.1587 7 1.1479	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 9 1.6116	
275 280 285 290 395 800 806 810 818 820 225	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 99.6	88 80 00 55 56	0.0172 0.0178 0.0178 0.0174 0.0174 0.0176 0.0176 0.0176 0.0176	1 8,01. 5 7,44. 6 6,98. 6 6,45. 6 6,616. 6 5,936. 6 4,897. 4,583.	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628 9 5.257 7 4.915 3 4.601	249.00 254.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49	3 924.6 3 921.0 1 917.4 5 918.7 9 10.1 3 906.8 3 902.6 8 98.8 9 895.0 8 891.1	3 1173.7 2 1175.2 1 1176.7 7 1178.2 1 1179.7 3 1181.1 1 1182.5 1 1183.9 1 186.3	0.4096 0.4186 0.4284 0.4302 0.4370 0.4487	3 1.2500 5 1.2368 4 1.2237 8 1.2107 1.1980 7 1.1852 5 1.1727 1.1587	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 9 1.6116	
275 280 285 290 295 800 205 210 215 220 225	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 99.6	00 55 58 1 8 8 8 9 0 0 5 6	0.0173 0.0178 0.0178 0.0174 0.0174 0.0176 0.0176 0.0176 0.0176 0.0177	1 8,01. 5 7,44. 6 6,45. 6 6,01. 6 5,61. 6 5,23. 4,897. 4,293.	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 9 5.257 7 4.915 3 4.601 2 4.310	249.00 254.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49	3 924.6 3 921.0 1 917.4 9 918.7 9 910.1 3 906.8 8 902.6 9 895.0 9 891.1	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6	0.4094 0.4184 0.4284 0.4302 0.4370 0.4437 0.4508 0.4571 0.4637 0.4703	3 1.2600 5 1.2361 4 1.2261 7 1.2107 9 1.1980 7 1.1852 6 1.1727 1.1587 7 1.1479 1.1358	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 9 1.6116 1.6059 4 1.6003	
275 280 285 290 295 200 205 218 220 225 235 235 240	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 99.6	00 55 5 8 1 8 8 8 0 0 5 6	0.0173: 0.0178: 0.0178: 0.0174: 0.0174: 0.0175: 0.0176: 0.0170: 0.0177: 0.0177:	1 8,01: 5 7,44: 6 6,98: 6 6,45: 6 5,61: 6 5,61: 6 5,83: 4.897: 4.883: 4.293: 4.021:	4 8.651 5 8.082 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628 9 5.257 7 4.915 3 4.601 2 4.810	249.06 254.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49	3 924.6 3 921.6 1 917.4 5 918.7 9 10.1 3 906.3 3 902.6 3 898.8 9 895.0 9 891.1	3 1173.7 1176.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8	0.409(0.4184 0.4284 0.4302 0.4370 0.4437 0.4508 0.4571 0.4637 0.4703	3 1.2500 5 1.2368 4 1.2237 8 1.2107 9 1.1980 7 1.1852 6 1.1727 1.1587 7 1.1479 1.1356 9 1.1234 1.1114	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 0 1.6116 3 1.6059 4 1.6003 4 1.6949	
275 285 290 295 290 306 210 218 220 225 235 240 345	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 89.6 96.1 103.0 110.3 117.9 126.1	00 55 53 1 8 8 8 8 0 0 5 5 6 6 3 1	0.0173 0.0178 0.0178 0.0174 0.0174 0.0176 0.0176 0.0176 0.0176 0.0177	8,01. 6,7.44 9,6.98 6,6.45 9,6.01 6,6.16 6,5.23 6,4.89 7,4.883 6,4.29 6,4.02 7,77 7,77	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628 9 5.257 7 4.915 3 4.601 2 4.310 2 4.330 1 4.039	249.06 264.18 259.31 264.45 269.60 274.76 279.99 285.10 290.29 295.49 300.69 805.91	3 924.6 3 921.0 1 917.4 5 918.7 9 910.1 6 906.8 8 902.6 8 901.1 8 887.1 8 887.1	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8 1189.1 1190.3	0.4090 0.4164 0.4284 0.4302 0.4373 0.4501 0.4571 0.4687 0.4703 0.4769	3 1.2500 5 1.2368 4 1.2237 8 1.2107 1.1980 7 1.1852 6 1.1727 1.1587 7 1.1478 1.1478 1.1358	8 1.6533 7 1.6471 7 1.6409 0 1.6350 2 1.6289 7 1.6168 9 1.6116 3 1.6059 4 1.6003 4 1.5949 4 1.5894	
275 280 285 290 295 300 305 210 315 320 225 330 325 340	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.6 90.6 96.1 103.0 110.3	00 55 53 1 8 8 8 8 0 0 5 5 6 6 3 1	0.0172 0.0178 0.0174 0.0174 0.0174 0.0175 0.0175 0.0176 0.0177 0.01777	8,01. 6 7,44. 0 6,93. 6 6,45. 0 6,01. 6 5,61. 6 5,83. 4,897. 4,583. 4,292. 4,023. 3,777. 3,539.	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 6 5.628 9 5.257 7 4.915 3 4.601 2 4.310 1 4.039 9 3.557	249.06 254.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49	3 924.6 3 921.6 1 917.4 5 918.7 9 910.1 3 905.8 8 902.6 9 898.8 9 895.0 8 891.1 9 887.1 8 879.2 8 879.2	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8 1189.1 1190.3 1191.5	0.409(0.4184 0.4284 0.4302 0.4370 0.4437 0.4508 0.4571 0.4637 0.4703	3 1.2500 5 1.2368 4 1.2237 7 1.1980 7 1.1852 6 1.1727 1.1587 1.1479 1.1356 6 1.1234 1.1094 1.0875	8 1.6533 7 1.6479 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 0 1.6116 3 1.6059 4 1.6949 4 1.5894 1.5894	
275 280 285 290 395 800 818 820 225 830 846 846 850	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 89.6 96.1 103.0 110.3 117.9 126.1 184.6	88800556688199002288	0.0172 0.0178 0.0178 0.0174 0.0174 0.0176 0.0176 0.0176 0.0177 0.01772 0.01782 0.01788	1 8.01. 5 7.44. 6 6.93. 6 6.45. 0 6.01. 6 6.01. 6 6.01. 6 6.01. 6 6.01. 6 6.01. 6 8.334. 8 4.293. 4 4.293. 8 4.021. 8 3.771. 8 3.334.	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.32 0 5.628 9 5.257 7 4.915 3 4.601 1 4.039 3.789 9 3.557 4 3.342	249.06 264.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49 300.69 805.91 811.14 816.38	3 924.6 3 921.1 5 918.7 910.1 5 908.8 6 902.6 8 902.6 8 903.6 8 903.6 8 903.6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1185.3 1186.6 1187.8 1189.1 1190.3 1191.5	0.4090 0.4164 0.428 0.430 0.430 0.430 0.450 0.457 0.450 0.457 0.4703 0.4769 0.4835 0.4900 0.4936 0.5030	3 1.2500 5 1.2363 1.2237 1.2100 1.1980 7 1.1852 5 1.1727 1.1457 1.1356 1.1234 1.0904 1.0875 1.0757	8 1.6533 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 3 1.6069 4 1.6003 4 1.5894 1 1.5894 1 1.5787	
275 280 284 290 295 200 202 210 213 225 225 225 230 245 250 255 250 255 250 255 250 255 250 250	45.4 49.2 58.2 57.5 62.1 67.0 72.1 77.6 83.5 96.1 103.0 117.9 126.1 124.6 143.5 153.0	8888005566311	0.0173 0.0178 0.0178 0.0174 0.0174 0.0175 0.0175 0.0176 0.0177 0.01772 0.01782 0.01799	1 8.01. 5 7.441 6 6.455 6 6.455 6 6.656 6 5.611 6 5.611 6 8.234 6 4.897 6 4.893 6 4.292 7 4.021 7 8.536 7 8.536 8 3.394 8 3.126 8 3.126 8 3.126 8 3.126 8 3.126 8 3.126 8 3.126	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 9 5.628 9 5.257 7 4.915 3 4.601 2 4.310 1 4.039 1 3.789 2 3.557 4 3.342 3 3.144 5 2.958	249.06 264.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49 300.69 805.91 811.14 316.38	3 924.6 3 921.6 917.4 5 918.7 910.3 3 905.8 3 902.6 9 898.8 9 898.8 9 897.1 9 887.1 9 877.0 8 877.0	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8 1189.1 1190.3 1191.5 1192.6	0.4094 0.4184 0.4284 0.4302 0.4377 0.4502 0.4571 0.4637 0.4703 0.4769 0.4303 0.4900 0.4906 0.5030	3 1.2500 5 1.2363 1 1.2237 1 1.2107 1.1980 7 1.1855 7 1.1476 1 1.1358 1 1.1234 1 1.114 1 1.0949 1 1.0875 1 1.0875	8 1.6533 7 1.6479 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 9 1.6116 3 1.6059 4 1.6059 4 1.5894 1 1.5787 0 1.5734	
275 280 285 290 295 200 205 210 215 220 225 230 245 250 255 250 255 256 256 256 256 256 256 256 256 256	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 89.6 96.1 103.0 110.3 117.9 126.1 134.6 143.5 153.0 162.9	88 88 88 88 88 88 88 88 88 88 88 88 88	0.0172 0.0178 0.0178 0.0174 0.0174 0.0175 0.0176 0.0176 0.0177 0.01772 0.0178 0.01799 0.0180 0.0181	1 8.01. 5 7.44 9 6.98 6 6.45 6 6.45 6 6.61 6 6.33 6 6.33 6 4.83 7 4.83 8 4.92 8 4.92 8 3.77 8 3.53 8 3.34 8 3.12 9 2.76 9 2.76	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.32 0 5.628 9 5.257 7 4.915 3 4.601 1 4.039 1 3.789 0 3.557 3 3.42 3 3.42 3 3.144 6 2.958 8 2.786	249.06 264.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49 300.69 805.91 311.14 316.38 321.64	5 924.6 3 921.6 917.4 918.7 910.1 3 905.8 8 905.0 8 901.1 8 871.1 8 871.0 8 875.1 8 871.0 8 885.0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1185.3 1186.6 1187.8 1190.3 1191.5 1192.6	0.4090 0.4164 0.428 0.430 0.430 0.430 0.450 0.457 0.450 0.457 0.4703 0.4769 0.4835 0.4900 0.4936 0.5030	3 1.2500 5 1.2363 1 1.2237 3 1.2107 1.1980 7 1.1855 5 1.1727 1.1587 7 1.1587 1.1479 1.1356 1.1234 1.10875 1.0875 1.0640 1.0522	8 1.6533 7 1.6479 7 1.6409 0 1.6350 2 1.6282 7 1.6232 7 1.6168 5 1.6116 5 1.6059 4 1.6003 4 1.5894 6 1.5894 1.5787 0 1.5734 1.5681	
275 280 285 290 295 290 306 810 815 820 225 830 345 850 856 856 870	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 80.6 96.1 103.0 110.3 117.9 126.1 134.6 143.5 153.0 162.9 173.3	00 55 53 1 8 8 8 8 0 0 5 6 6 8 1 9 0 0 2 8 1 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.01724 0.01781 0.01744 0.01744 0.01746 0.01756 0.01761 0.01777 0.01778 0.01799 0.01799 0.01805 0.01817 0.01817	1 8.01. 5 7.441 6 6.456 6 6.651 6 6.616 6 6.616 6 7.236 6 7.236 6 7.236 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 0 5.628 9 5.257 7 4.915 3 4.601 2 4.310 4 0.39 9 3.557 4 3.342 3 3.144 5 2.958 6 2.786 7 2.786	249.06 264.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49 300.69 305.91 311.14 316.38 321.64 326.91 337.48 342.79	3 924.6 3 921.6 917.4 5 918.7 910.3 906.8 8 902.6 9 898.8 9 898.8 9 897.1 8 877.1 8 877.1 8 877.1 8 878.2 8 878.2 8 878.3 8 888.2 8 888.2 8 888.2 8 888.2	3 1173.7 1175.2 1176.7 1178.2 1179.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8 1189.1 1190.3 1191.5 1192.6	0.4094 0.4184 0.4284 0.4302 0.4377 0.4502 0.4571 0.4637 0.4703 0.4703 0.4900 0.4906 0.5030 0.5094 0.5159 0.5223 0.5228	3 1.2500 5 1.2364 1.2237 1.1980 7 1.1852 7 1.1727 1.1527 1.1478 1.1356 1.1114 1.0904 1.0975 1.0522 1.0406	8 1.6533 7 1.6409 0 1.6350 2 1.6289 7 1.6232 7 1.6168 9 1.6116 3 1.6003 4 1.6903 4 1.5894 6 1.5841 1.5787 0 1.5734 1.5689 1.5689 1.5689 1.5689 1.5689	
275 280 285 290 295 200 205 210 215 220 225 230 245 250 255 250 255 256 256 256 256 256 256 256 256 256	45.4 49.2 53.2 57.5 62.1 67.0 72.1 77.6 83.5 89.6 96.1 103.0 110.3 117.9 126.1 134.6 143.5 153.0 162.9	88 88 88 88 88 88 88 88 88 88 88 88 88	0.0172 0.0178 0.0178 0.0174 0.0174 0.0175 0.0176 0.0176 0.0177 0.01772 0.0178 0.01799 0.0180 0.0181	1 8.01.7.4416 2 6.9836 3 6.456 4 6.01-6 5.3246 5 4.883 6 4.292 6 4.021 6 3.3771 6 3.5394 7 2.458 7 2.944 7 2.458	4 8.651 5 8.032 8 7.465 1 6.948 4 6.471 4 6.032 6 5.628 9 5.257 7 4.915 3 4.601 2 4.310 4.039 9 3.557 3 3.789 9 3.557 3 3.442 3 3.144 6 2.958 8 2.786 8 2.786 8 2.786 8 2.786 8 2.786 8 2.786	249.06 264.18 259.31 264.45 269.60 274.76 279.92 285.10 290.29 295.49 300.69 805.91 311.14 316.38 321.64	3 924.6 3 921.6 917.4 5 918.7 910.1 3 906.8 9 902.6 9 898.8 9 898.0 8 891.1 8 871.1 8 871.0 8 868.8 8 868.2 8 888.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 1173.7 1175.2 1176.7 1178.2 1179.7 3 1181.1 1182.5 1183.9 1185.3 1186.6 1187.8 1189.1 1190.3 1191.5 1192.6	0.4094 0.4184 0.4284 0.4370 0.4370 0.4571 0.4503 0.4571 0.4637 0.4769 0.4835 0.4900 0.4966 0.5030	3 1.2500 5 1.2363 1 1.2237 1 1.2107 1 1.1980 7 1.1855 5 1.1727 1 1.1587 7 1.1587 7 1.1587 1 1.1040 1 1.0940 1 1.0940 1 1.0522 1 1.0400 1 1.0291	8 1.6533 7 1.6479 7 1.6409 0 1.6350 2 1.6282 7 1.6232 7 1.6168 3 1.6059 4 1.6003 4 1.5894 6 1.6841 1.5787 0 1.5734 1.5681 6 1.5620 1.5577 1.5526	

TABLE 1. SATURATED STEAM: TEMPERATURE TABLE--Concluded

		I A DIAB L.	BATURA	THO DIRAM:	LAMAL	BRATURE	17年12年	Concluded	.		
÷	Abs. Press.		anc Vol			ENTRALFI			ENTROP	r .	_
Temp.	Lb./Sq. In.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Bat. Liquid	Evap.	Bat. Vapor	Temp Fahr
t	p	¥1	Vig	Yg	h _i	hie	hg	and the second	Mymp. Mg	ag .	į.
890	220,29	0.01850	2.064	2.083	364.17	885.7	1199.9	0.5540	0.9835	1.5375	390
295	288.47	0.01857	1.9512	1.9698	369.56	\$31.0	1200.6	0.5602	0.9723	1.5325	395
400	247.25	0.01864	1.8446	1.8632	874.97	826.2	1201.2	0.5664	0.9610	1.5274	600
403	261.67	0.01871	1.7445	1.7682	380.40	821.4	1201.8	0.5727	0.9499	1.5228	404
410 413	276.72 292.44	0.01878	1.6508	1.6696	285.83	816.6	1202.4	0.5789	0.9890	1.5179	410
420	308.82	0.01886 0.01894	1.5630 1,4806	1.5819 1.4998	891.80 896.78	811.7 506 .7	1203.0 1203.5	0.5851	0.9280 0.9170	1.5131 1.5082	418 4 90
- 1									0.5110	1,0002	ACA.
425	325.91 343.71	0,01902 0,01910	1,4031 1,3303	1.4221 1.8494	402.28 407.80	801.6	1203.9	0.5974	0.9061	1.5035	494
41.5	362.27	0.01918	1.2617	1,2809	418.85	796.5 791.2	1204.3 1204.6	0.6036 0.6097	0.8953 0.8843	1.4989 1.4940	436 435
440	381.59	0.01926	1.1978	1.2166	418.91	785.9	1204.8	0.6159	0.8735	1.4894	440
445	401.70	0.01984	1.1367	1,1560	424.49	780.4	1204.9	0.6220	0.8626	1.4846	448
450	422.61	0.01943	1.0796	1.0990	43 0.11	774.9	1205.0	0.6281	0.8518	1.4799	450
465	444.35	0.0195	1.0256	1.0451	435.74	769.3	1205.0	0.6342	0.8410	1.4752	485
460	466.97	0,0196	0.9745	0.9941	441.42	768.6	1205,0	0.6408	0.8303	1.4706	466
445	490.48	0.0197	0.9262	0.9459	447.10	757.8	1204.9	0.6468	0.8195	1.4658	445
470 475	514.70 539.90	0.0198 0.0199	0.8808	0.9006 0.8578	452.84	751.9	1204.7	0.6524	0.8088	1.4612	470
	005,50	0.0199	0.0014	V.007.0	458.59	745.9	1204.5	0.6585	0.7980	1.4565	475
400	566.12	0.0200	0.7972	0.8172	464.37	739.8	1204.2	0.6646	0.7873	1.4519	480
405 490	593.28	0.0201	0.7585	0.7786	470.18	733.6	1203.8	0.6706	0.7766	1,4472	485
495	621.44 650.59	0.0202 0.0203	0.7219 0.6872	0.7 42 1 0. 7075	476.01 481.90	727.8	1203.3 1202.7	0.6767	0.7658	1.4425	496
900	680.80	0.0204	0.6544	0.6748	487.80	720.8 714.2	1202.0	0.6827 0.6888	0.7550 0.7442	1.4377 1.4330	495 500
	710.10										
50-6 51 0	712.19 7 44 .55	0.0206 0.0207	0.6230	0.6436	493.8	707.5	1201.3	0.6949	0.7334	1.4283	505
51.5	777.96	0.0208	0.5932 0.5651	0.6139 0.5859	499,8 505.8	700.6 693.6	1200,4 1199,4	0.7009	0.7225	1.4234	510
51:0	812.66	0.0209	0.5382	0.8591	511.9	686.5	1198.4	0.7070 0.7132	0.7116 0.7007	1.4186 1.4139	515 520
525	848.37	0.0210	0.5128	0.5338	518.0	679.2	1197,2	0.7192	0.6898	1.4090	824
520	885,20	0.0212	0.4885	0.5097	524.3	671.9	1196.1	0.7052	0.4700	1 4040	
61.5	923.45	0.0213	0.4654	0.4867	530,4	664.4	1194.8	0.7253 0.7314	0.6789 0.6679	1,4042 1,3993	520 535
54 0	962.80	0.0214	0.4488	0.4847	536.6	856.7	1193.3	0.7375	0.6569	1.3944	840
•											
			•	-							
* 4 *	1002 4	0.0014	0.4000	0.4490	542.s	648.9	1191.8	A 7498	0.6459	1 9805	348
545 546	1003.6 1045.6	0.0216 0.0218	0,4222	0. 4438 0. 423 9	549.3	640.9	1190.2	0.7436 0.7498	0.6347	1.8895 1.3845	540
556	1088.8	0.0219	0.3880	0.4049	555.7	682.6	1188.3	0.7559	0.6234	1.8793	868
640	1133.4	0.0221	0.3648	0.8869	562.2	624.1	1186.3	0.7622	0.6120	1.3742	544
545	1179.3	0.0222	0.3472	0.8694	568.8	615.4	1184.2	0.7684	0.6006	1.3690	545
570	1226.7	0.0224	0.3304	0.3528	575.4	606.5	1181,9	0.7787	0.5890	1.3627	570
575	1275.7	0.0226	0.8143	0.8869	582.1	597.4	1179.5	0.7810	0.5774	1.3584	875
580	1326.1	0.0228	0.2989	0.3217	588.9	588.1	1177.0	0.7872		1.3528	880
585	1378.1	0.0230	0.2840	0.8070	59 5.7	578.6	1174.3	0.7936	0.5538	1.3474	585
590 595	1431.5 1486.5	0.0232 0.0234	0.2699 0.2563	0. 29 31 0.2797	602.6 609.7	568,8 558,7	1171.4 1168.4	0.8000 0.8065	0.5419 0.5297	1.3419 1.3362	590 595
						•		0.0000	0.0201		
600	1543.2	0.0236	0.2432	0.2668	616.8	548.4	1165.2	0.8130	0.5175	1.3305	600
605 610	1601.5 1661.6	0.0239 0.0241	0,2306 0,2185	0.2545 0.2426	624.1 631.5	537.7 526,6	1161.8 1158.1	0.8196 0.8263	0.5050 0.4923	1.3246 1.3186	605 610
615	1723.4	0.0244	0.2068	0.2812	638.9	515.3	1154.2	0.8330	0.4795	1.3125	618
620	1787.0	0.0247		0.2202	646.5		1150.2	0.8398	0.4665	1.3063	620
625	1852.4	0.0250	0.1845	0.2095	654.8	491.5	1145.8	0.9467	0.4891	1 2002	205
436	1919.8	0.0258	0.1740	0.1998	652.2	478.8	1141.0	0.8467 0.8537	0.4531 0.4394	1.2998 1.2931	62 5 63 0
415	1989.0	0.0258	0.1638	0.1894	670.4	465.5	1135.9	0.8609	0.4252	1.2861	68#
540	2060.3	0.0260	0.1539	0.1799	678.7	452.0	1130.7	0.8681	0.4110	1.2791	640
642	2133,5	0.0264	0.1441	0.1705	687.8	437.6	1124.9	0.8756	0.3961	1.2717	645
650	2208.8	0.0268	0.1348	0.1616	696.0	422.7	1118.7	0.8832	0.3809	1.2641	680
455	2286.4	0.0273	0.1256	0.1529	705.2	407.0	1112,2	0.8910	0.3651	1.2561	686
660	2366.2	0.0278	0.1167	0.1445	714,4	390.5	1104.9	0.8991	0.3488	1,2479	660
565	2448.0	0.0283	0.1079	0.1362	724.5	372.1	1096.6	0.9074	0.3308	1.2382	665
670	2532.4	0.0290	0.0991	0.1281	734.6	853.8	1087.9	0.9161	0.3127	1.2288	670
675	2619.2	0.0297	0.0904	0.1201	745.5	332.8	1078.3	0.9253	0.2933	1.2186	676
680	2708.4	0.0305	0.0810	0.1115	757.2	310.0	1067.2	0.9352	0.2720	1.2072	680
586 590	2800.4 2895.0	0.0316 0.0328	0.0716 0.0617	0.1032 0.0945	770.1 784.2	284.5 254.9	105 4.6 1039.1	0.9459 0.9579	$0.2485 \\ 0.2217$	1.19 44 1.1796	685 6 90
698	2992.7	0.0345	0.0511	0.0856	801.3	219.1	1020.4	0.9720	0.1897	1.1617	694
100	3094.1	0.0369	0.0389	0.0758	823.9	171.7	995.6	0.9904	0.1481	1.1385	700
705	3199.1	0.0440	0.0157	0.0597	870.2	77.6	947.8	1,0305	0.0661	1.0966	705
705.84	* 3206.2	0.0541	0	0.0541	910,3	0	910.3	1.0645	0	1.0645	705 84
		0.0011					22010	2.0010			

Table 2. Saturated Steam: Pressure Table

		7	Table 2. Satur	ated Stea	m: Pressure	Table			
Abs. Prees. Lb./Sq. In.	Temp; Fahr, t	Sat.	TC VOLUME Sat. Evap. Vapor Vie Ye	Sat. Liquid h	ENTHALPT Sat. Evap. Vapo hig hg	Sat. or Liquid	ENTROPY Evap.	Bat. Vapor	Aba. Pres Lb./8q. I
0.0886 0.126 0.250 0.500 1 5 18 14.695	32.00 40.69 59.31 79.58 101.76 162.25 193.21 212.00 213.03	0.01602 0.01603 0.01607 0.01614 0.01641 0.01659 0.01672	3305.7 3305.7 2383.7 2383.7 1235.8 1235.8 641.71 641.73 333.77 323.79 73.584 73.600 38.445 38.462 26.811 26.828 26.303 26.320	0 8.74 27.38 47.60 69.72 130.13 161.17 180.07	1075.1 1075. 1070.2 1078. 1059.5 1086. 1048.0 1095. 1035.5 1105. 1000.7 1130. 982.1 1143. 970.3 1150. 969.6 1150.	0.0924 2 0.1325 8 0.2347 3 0.2834 4 0.3120	2.1388 2.0414 1.9434 1.8443 1.6090 1.5042 1.4446	2.1865 2.1564 2.0956 2.0358 1.9769 1.8487 1.7876 1.7566	0.0888 0.188 0.860 0.800 0.800 11 15 10 14.898
20 30 60 50 60 70 80 90	227.96 250.34 267.24 281.01 292.71 302.92 312.03 320.27	0.01683 0.01700 0.01715 0.01727 0.01738 0.01748 0.01757 0.01766	20.093 20.110 13.746 13.763 10.489 10.506 8.505 8.522 7.162 7.179 6.193 6.210 5.458 5.476 4.880 4.898	196.16 218.83 236.02 250.09 262.10 272.61 282.02 290.57	959.9 1156. 945.2 1164. 933.7 1169. 923.9 1174. 915.4 1177. 907.9 1180. 901.1 1183. 894.8 1185.	0 0,3680 7 0,3919 0 0,4110 5 0,4271 5 0,4409 1 0,4532	1,3312 1,2844 1,2473 1,2166 1,1905 1,1677	1.7315 1.6992 1.6763 1.6583 1.6437 1.6314 1.6209 1.6113	20 20 40 50 60 70 80 80
100 110 120 180 140 150 150 170 180	327.83 334.79 341.26 347.31 353.03 358.43 363.55 368.42 373.08	0.01774 0.01782 0.01789 0.01796 0.01803 0.01809 0.01815 0.01821 0.01827 0.01833	4.415 4.433 4.032 4.050 3.710 3.728 3.437 3.455 3.202 3.220 2.998 3.016 2.816 2.834 2.656 2.674 2.514 2.532 2.386 2.404	298.43 305.69 312.46 318.81 324.83 330.53 335.95 341.11 346.07 350.83	888.9 1187, 883.3 1189, 878.1 1190, 873.2 1192, 868.5 1193, 863.9 1194, 859.6 1195, 855.2 1196, 851.1 1197, 847.2 1198.	0 0.4832 6 0.4916 0 0.4996 3 0.5069 4 0.5138 5 0.5204 3 0.5266 2 0.5325	1.0963 1.0820 1.0686 1.0560 1.0442 1.0327 1.0220	1.6028 1.5950 1.5879 1.5815 1.5755 1.5698 1.5646 1.5593 1.5545 1.5501	106 118 180 180 160 160 170 186 186
200 210 220 230 240 250 250 250 250 250 250 250	381.82 385.93 389.89 393.70 397.40 400.97 404.43 407.79 411.06 414.24 417.38 481.71	0.01870 0.01875 0.01880 0.01885 0.01890	2.270 2.288 2.165 2.183 2.067 2.088 1.9903 1.9989 1.8990 1.9176 1.8244 1.8481 1.7655 1.7742 1.6913 1.7101 1.6316 1.6504 1.5758 1.5947 1.5237 1.5426 1.3064 1.3255	355.40 359.80 364.05 368.16 372.16 876.04 379.78 883.43 386.99 390.47 393.85 409.70	843,3 1198 839.6 1199 835.8 1199 832.2 1200 828.7 1200 828.4 1201 818.8 1202 815.5 1202 812.4 1202 809.3 1203 794.7 1204	.4 0.5488 .9 0.5538 .4 0.5685 .9 0.5632 .4 0.5677 .8 0.5720 .2 0.5761 .5 0.6802 .9 0.5841 .2 0.5879	0.9929 0.9838 0.9752 0.9669 0.9590 0.9613 0.9439 0.9365 0.9296	1.5487 1.5417 1.5376 1.5337 1.5301 1.5267 1.5233 1.5200 1.5167 1.5137 1.5107 1.4972	300 219 229 234 244 254 254 279 280 290 390
480 480 500 580 600 650 700 750 780 880 900 980	444.58 456.27 467.00 476.94 486.31 494.90 503.09 510.83 518.90 525.23 531.94 538.38	0.0195 1.0 0.0197 0.5 0.0199 0.6 0.0201 0.7 0.0203 0.6 0.0205 0.6 0.0207 0.1 0.0210 0.5 0.0212 0.5	1416 1.1609 0123 1.0318 9077 0.9274 8217 0.8416 7494 0.7695 8879 0.7082 9347 0.6552 5884 0.6091 5476 0.5685 5116 0.5326 4794 0.6006 4503 0.4717	494.02 487.18 449.40 460.83 471.59 481.78 500.8 509.7 518.8 526.6 534.6	780.9 1204.9 767.8 1205.0 755.5 1204.9 743.6 1204.4 783.0 1203.6 791.0 1202.7 710.1 1201.6 699.4 1200.2 689.1 1198.8 678.9 1197.3 689.0 1195.8 659.2 1198.8	0.6357 0.6488 0.6609 0.6721 0.6825 0.6925 0.7019 0.7108 0.7194 0.7276	0.6382 1.0 0.8153 1.4 0.7939 1.4 0.7553 1.4 0.7553 1.4 0.7376 1.4 0.79206 1.4 0.7047 1.4 0.6893 1.4 0.6746 1.4	1850 1739 1641 1548 1460 1379 1301 1225 1155 1087 1022	400 450 550 550 550 700 700 750 800 840 900
1000 1050 1100 1150 1800 1860 1860 1860 1400 1480	544.58 550.52 556.26 561.81 567.19 572.89 577.43 582.82 587.07 591.70	0.0218 0.4 0.0219 0.5 0.0221 0.5 0.0223 0.5 0.0225 0.5 0.0227 0.5 0.0229 0.5 0.0231 0.5	4240 0.4456 4001 0.4219 8783 0.4002 8583 0.3804 83897 0.3620 3228 0.3458 8067 0.3294 2918 0.3147 7780 0.3011 2652 0.2865	542.4 550.0 557.4 564.6 571.7 578.5 585.4 592.1 598.6 605.0	649.5 1191.9 640.0 1190.0 630.4 1187.8 621.0 1185.6 611.5 1183.2 603.2 1180.8 592.9 1178.8 583.7 1175.8 574.6 1178.2 565.5 1170.5	0.7504 0.7575 0.7644 0.7712 0.7777 0.7840 0.7902 0.7963	0.6335 1.3 0.6205 1.3 0.6079 1.3 0.5955 1.3 0.5835 1.3 0.5717 1.3 0.5602 1.3 0.5489 1.3	3899 3780 3780 3723 3667 3612 3557 3504 4452	1000 1050 1100 1150 1360 1360 1380 1400 1480
1860 1850 1600 1850 1700 1750 1860 1860 1860	596.20 600.59 604.87 609.05 613.12 617.11 621.00 624.82 628.55 632.20	0.0235 0.2 0.0237 0.2 0.0239 0.2 0.0241 0.2 0.0243 0.2 0.0245 0.2 0.0247 0.1 0.0249 0.1 0.0252 0.1 0.0254 0.1	2530 0.2765 2416 0.2653 2309 0.2548 2207 0.2448 2111 0.2354 02020 0.2965 1933 0.2180 0.8099 17770 0.2022 1695 0.1949	611,4 617,7 623,9 630,0 636,1 642,1 648,0 663,9 659,9 665,8	556.3 1167,7 547.1 1164.8 528.0 1161.9 528.8 1158.8 519.6 1155.7 510.4 1152.6 501.3 1149.3 492.0 1146.9 482.5 1142.4 473.0 1138.8	0.8081 0.8138 0.8195 0.8250 0.8304 0.8359 0.8412 0.8465 0.8517	0.5160 1.3 0.5054 1.3 0.4948 1.3 0.4843 1.3 0.4740 1.3 0.4639 1.3 0.4587 1.3	3350 3298 3249 3198 3147 3099 3051 3002 2951	1500 1550 1500 1560 1700 1750 1800 1850 1950
3000 3100 3300 3300 3400 3400 3500 3700 3800 3700 3000 3100 3200 3300	635.78 642.73 649.42 655.87 662.09 668.10 673.91 679.54 684.98 690.26 695.37 700.29 705.04 705.84	0.0257 0.1 0.0262 0.1 0.0264 0.1 0.0274 0.3 0.0287 0.1 0.0295 0.6 0.0305 0.6 0.0316 0.6 0.0329 0.6 0.0346 0.6 0.0346 0.6	1622 0.1879 1486 0.1748 1359 0.1626 1240 0.1514 1130 0.1410 1026 0.1818 1024 0.1219 1818 0.1123 10716 0.1032 10612 0.0941 10503 0.0849 10503 0.0596 0 0.0541	671.7 683.4 695.0 706.7 718.5. 730.7 743.1 756.1 770.0 785.2 802.6 824.6 871.3	463.5 1136.2 444.2 1127.6 424.4 1119.4 404.3 1111.0 382.9 1101.4 360.3 1091.0 337.0 1090.1 312.2 1068.3 284.6 1054.6 252.9 1038.1 216.7 1019.3 169.4 994.0 75.3 946.6 0 910.8	0.8620 0.8722 0.8823 0.8923 0.9025 0.9127 0.9232 0.9342 0.9458 0.9586 0.9731	0.4231 1.2 0.4029 1.2 0.8826 1.2 0.3624 1.2 0.3413 1.2 0.2973 1.2 0.2740 1.2 0.2486 1.1 0.1460 1.1 0.0647 1.0	2851 2751 2649 2547 2438 2322 2322 2205 2082 1944 1785 1607 1376 1958	2000 3100 3300 3800 2400 2500 3500 2500 2500 3000 3100 3200 3200 3200

* Critical pressure

Table 3. Superheated Steam

sbs. Pr									·								
Lb./8q.	In.	Sat. Water	Sat. Steam	TEMP#	**************************************	DEGR	350°	HRENHE 400°	1T 450°	500°	606°	700°	800°	900°	1000°	1100°	1200°
(101.78)				1149.2 2.0491	1171.9 2.0822	1194.4 2.1128	1217.3 2.1420	1240.2 2.1694	1263.5 2.1957	1286.7 2.2206	1333,9 2.2673	1382.1 2.3107	750.2 1431.0 2.3512	809.8 1480.8 2.3892	869.4 1531.4 2.4251	929.1 1583.0 2.4592	2.49 IN
5 (162.25)	8	0.2347	1.8437	1.8710	1.9043	1.9349	1.9642	1.9920	2.0182	2.0429	2.0898	2.1333	2.1738	2,2118	2.2478	1582.9 2.2820	1037.75 197.72 1635.3 2.3146
19 (193.21)	. 6	0.0166 161.17 0.2834	38.462 1143.3 1.7876	6.79 38.88 1146.7 1.7928	1.8271	1.8579	1.8875	1.9154	1.9416	1.0665	2.0135	2.0570	2.0975	2.1356	2.1716	1582.8 2.2058	
14.698 (212.00)	. 8	0.0167 180.07 0.3120	26.828 1150.4 1.7566		1169.2 1.7838	1192.0 1.8148	1215.4 1.8446	1238.9 1.8727	1202.1 1.8989	1285.4 1.9238	1333.0 1.9709	1381.4 2.0145	50.97 1430.5 2.0551	55.03 1480.4 2.0932	59.09 1531.1 2.1292	63,19 1582.7 2.1634	988.00 67.25 1635.1 2.1960
18 (213.03)	. 8	0.0167 181.11 0.3135	26.320 1150.7 1.7548		1169.2 1.7816	1192.0 1.8126	1215.4 1.8424	1238.9 1.8705	1262.1 1.8967	1285.4 1.9216	386.97 41.98 1338.0 1.9667	1381.4 2.0123	1430.5 2.0529	1480.4 2.0910	57.91 1531.1 2.1270	61.91 1582.7 2.1612	65.89 1635.1 2.1938
20 (227.96)		0.0168 196.16 0.3356	20.110 1156.1 1.7315		1168.0 1.7485	1191.1	1214.8 1.8101	1238.4 1.8384	1261.6 1.8646	1285.0 1.8896	1.9000	1381.2 1.9805	37.44 1430.3 2.0211	40.43 1480.2 2.0592	43.42 1531.0 2.0952	46.43 1582.6 2.1294	49.41
25 (240.07)	h *		16.321 1160.4 1.7137		9.93 16.58 1166.3 1.7221	1190.2 1.7570	1214.1 1.7875	1237.9 1.8160	1261.1 1.8422	1284.6 1.8673	1.9140	27.56 1381.0 1.9584	29.94 1430.1 1.9990	32.33 1480.0 2.0371	34.73 1530.9 2.0732	37.14 1582.5 2.1074	
80 (250.34)	Sh Y h	0.0170 218.83 0.3680	13.763 1164.0 1.6992			49.66 14.82 1189.2 1.7335	1217 4	1237 4	1260 6	1994 9	349.66 20.94 1332.1 1.8918	1700.0	34.94	26.93	28.93	30.94	32.93
35 (259,28)	b	0.0171 227.92	11.907 1187,0 1.6869			40.72 12.66 1188.2 1.7156	13.57	14.45	1260.1	18.30	340.72 17.94 1331.9 1.8750	19.00	21.36	23.08	24.79	26.52	28.22
40 (267.24))a	0.0172 286.02	10.506 1189.7 1.6763			32.76 11.04 1187.1 1.6997	11.84	12.63	18.40	14.16	382.76 15.68 1831.6 1.8600	17 10	18 80	20:18	21 AR	93 9 0	932.76 24.69 1634.8 2.0860
44 (274.45)	b	0.0172 243.38	9.408 1172.0 1.6668			25.55 9.785 1185.9 1.5854					325.55 18.98 1381.8 1.5468						
\$0 (281,01)	h	0.0173 250.09	8.522 1174.0 1.6583			18.99 8.777 1184.6 1,6724	1210.3	10.06	10.59	11,80	318.99 12.53 1881.0 1.8349	1879.9	14.93	16.14	17.34	18.55	918.99 19.75 1634.6 2.0611
35 (287.07)	8h b	0.0173 256.30	7.792 1175.8 1.6506			1.8804	8.553 1209.4 1.6938	9,130 1234.6 1.7240	9.708 1258.2 1.7507	10.26 1282.2 1.7764	312.93 11.38 1330.7 1.8244	12.48 1879.7 1.8685	13.67 1429.1 1.9093	14.67 1479,2 1.9475	15.76 1530.3 1.9837	18.88 1581.9 2.0179	17.94 1634.8 2.0512
60 (292.71)	h	0.0174 262.10	7.179 1177.5 1.6437			7.29 7.260 1181.8 1.6494	57.29 7.821 1208.5 1.6834	107.29 8.853 1234.0 1.7139	157.29 8.882 1257.7 1.7407	207.29 9.398 1281.8 1.7665	307.29 10.42 1330.4 1.8146	407,29 11,44 1379,5 1,8588	507.29 12.44 1428.9 1.8996	607.29 13.44 1479.0 1.9378	707.29 14.44 1530.2 1.9741	807.29 15.45 1581.8 2.0083	907. 29 16.45 1634.4 2.0410
6 6 (297-97)	h #	0.0174 267.51 0 4342	6.654 1179.1 1.6374			1180.4	7.202 1207.6 1.6738	7.696 1233.4 1.7047	8.187 1357.2 1.7316	8.665 1281.4 1.7575	302.03 9.614 1330.1 1.8057	10.55 1379,3 1.8500	11.48 1428.8 1.8909	12.40 1478.9 1.9291	13.33 1530.1 1.9654	14.26 1581.7 1.9996	15.19 1634 4 2.0323
70 (302,92)	- h	0.0175 272.61	6.210 1180.5 1.6314				47.08 6.671 1206.7 1 6647	97.08 7.182 1232.8 1.6960	147.08 7.592 1256.7 1.7230	197.08 8.036 1281.0 1.7490	297.08 8.920 1329.9 1.7974	397.08 9.791 1379.0 1.8418	497.08 10.65 1428.6 1.8826	597.08 11.51 1478.7 1.9208	697.08 12.37 1530.0 1.9572	797.08 13.24 1581.6 1.3914	897 08 14.10 1634.3 2.0241
7# (307.5%)	b e	0.0175 277.44 0.4472	5.820 1181.9 1.6260				6.210 1205.8	6.644 1232.2 1.6879	7.076 1256 2	7.492 1280.6	1.7896	9.133 1378.8 1.8339	9 938 1428.4 1.8749	10.74 1478.6	11.54 1529.8 1.9495	12.36 1581 5 1.9837	13 16 1634 2

Sh = superheat, deg F.
v = specific volume, ou. ft per lb.

h = enthalpy, B.t.u. per lb.
a = entropy, B.t.u. per deg. F. per lb.

TABLE 3. SUPERIERATED STEAM-Continued

Aba, Press Lb /Sq In Sat.		Тюмранатоке	Оконъ	CER FAR	RENEE	- T							~	
(Bat Temp.) Water	Steam	27.97 47.97	380°	400°	410°	450°	\$00°	600°	700°	800*	900°		1100°	
80 v 0.0178 (312 0.3) b 282 02	1183.1	5.720 5.889 1200.0 1211.0 1,6424 1.6580	1221 2	1231.5	1240 3	12557	10000	1,793	8.558	9.313	10.07	10.82	787.97 11.58 1531.4 1.9768	12.33
86 v 0.0176 (316,25) h 286,40 x 0.4587	1184.3	23.75 43.75 5.368 5.528 1198.5 1210.0 1.6339 1.6481	5.685 1220.5	1220.7	1930 7	1955 1	1070.7	1300.0	8.050	8.762	9.472	10.18	783.75 10.90 1581.3 1.9699	11.61
90 v 0.0177 (820.27) h 290.57 a 0.4041	1185.4	19.73 39.73 5.055 5.208 1197.3 1209.0 1.6264 1.6408	59.73 5.357 1219.8 1.0538	1230 0	1230 1	1984.6	1970 3	0.910	7.599	8.272	8.943	9.026	779.73 10.29 1681.2 1.9636	10.98
8h v 0.0177 (324.13) h 294.53 s 0.4692	1186.4	15.87 35.87 4.773 4.921 1196.0 1208.0 1.6191 1.6339	5.063	12203	1972 6	1954 N	1970 0	10004	1,190	1.004	8 481	9.117	775.87 9.751 1581.1 1.9576	10.88
(827.83) h 298.43	1187.3	12.17 32.17 4.520 4.663 1194.9 1207.0 1.6124 1.6273	4.801	1998 4	1238 8	12537	1979 6	1227 0	0.836	7.448	8.055	8.659	772.17 9.262 1581.0 1.9520	9.862
1001.001 n 002.10	1100.2	8.62 28.62 4.292 4.429 1193.5 1205.9 1.6055 1.6208	1217 2	1227 A	1237 5	5.007	5.316	5.916	6.507	7.090	7.670	8.245	8.819	9.391
(334.79) h 305.69	1189.0	5.21 25.21 4.084 4.217 1192.2 1204.9 1.5990 1.6147	1216.4	4.469 1226 9	1238 0	1259 4	1277 5	5,643	1877 1	6.765	7.319	7.869	1	8.983
Sh 115	1189.8	4.022 1203.8	41.92 4.146 1215.6 1.6230	4,200 1226.2	1236.3	1251 0	1277 1	1327 1	5.935	0.469	6.999	7.525	761.92 8.049 1580.7 1.9366	8.572
					•									
341.26) 8h 120	1190.6	1202.7	88.74 8.963 1214.7 1.6173	1225 4	1235.7	1251 4	1976 7	5.165 1294 9	5.685	6.197	6.705	7.210	758.74 7.713 1580.6 1.9317	8.215
125 Y 0.0179 (344.34) h 315.69 s 0.4966	1191.8	15.66 8.680 1201.6 1,5973	35.66 3.796 1218.7 1.6119	55,66 3,908 1224,5 1,6246	1235.0	1250.8	1276 8	1326.5	1876.4	5.947 1408 A	0.435	6.920	1 K Q D K	7.885
347.31) h 318.81 2 0.4995	1192.0	12.69 8.528 1200.4 1.5918	32.69 3.641 1212.7 1.6066	52.69 3.750 1223.6 1.6194	1234.3	1250 3	4.268 1275 8	1326.1	1375 1	5.718 1428 4	6,186	6,653	752.69 7.117 1580.4 1,9230	7.581
350.21) h 321.86 1 0.5032 1	192.7	9.79 3.888 1199.2 1.6864	29.79 3.497 1211.7 1.6015	1222.7	3,707 1233.6	3.859 1249.7	4.105 1275.4	4,580 1325.8	5.045 1375.9	5.502 1425.2	5.955 1475.8	6.405 1528.5	749.79 6.853 1580.3 1,9186	7.303
Sh 140 y 0.0180 (353,03) h 324,83 • 0.5069		6.97 3,258 1198.0 1,5813	26.97 3.364 1210.6 1.5965	46.97 3.467 1221.8 1.6097	66.97 8,567 1232,9 1,6225	8.715 1249.1	8,954 1275.0	4.413 1325.5	4.862 1375.7	5.303	5.741 1478 6	8.175 1528 4	746.97 6.607 1580.2 1.9147	7.037
8h 145 7 0.0181 (355.76) h 327.71 s 0.5104	1198.9	5. 136	24,24 8,240 1209,5 1,5914	3.340 1220.9	8,438 1232,2	3,581 1248.5	3.812 1274.5	4.257 1325.1	4.692 1375.4	5.119 1425.8	5.541 1476.5	5.961 1528.3	6.378 1580 1	6.794 1633 1
150 Y 0.0181 (358.43) h 330.53 • 0,5138	1194.4		21.57 3.124 1208,4 1.5865	1220.0	1231.4	1248.0	3,681 1274.1	1324.9	1375.1	1425.6	5.355 1476.3	5.761 1528.1	741.57 6.164 1580.0 1.9068	16.567 1633 6
155 Y 0.0181 (361.02) h 333.27 s 0.5172	1195.0		18.98 3.015 1207.2 1.6818	1219.1	3.203 1230.7	3,340 1247.5	3,558 1273.6	8.976 1324.5	4.384 1374.9	4.785 1425.4	5.181 1476.2	5.574 1528.0	5.964 1579.9	0.354 1632 9
160 ¥ 0.0182 (363.55) h 336.95 a 0.5204	1195.5 1,5646		16.45 2.913 1206.0 1.5772	3.006 1218.3	3.097 1280.0	3.230 1246.9	3.443 1273.2	3.849 1324.1	4.245 1374.7	4.633 1425,2	5.018 1476.0	8.398 1527.9	5.777 1579.8	6.154 1632.8

Sh = superheat, deg. F.
v = specific volume, cu. ft. per lb.

h = enthalpy, B.t.u. per lb.
a = entropy, B.t.u. per deg. F. per lb.

TABLE 3. SUPERHEATED STEAM-Continued

Abs. Pre									^								
Lb./8q. (8st. Ten			Sat. Stenm	400.	410°	440.	460°	486.	800"	£\$6°	100.	7 90 °	300.	360 ,	1800*	1100*	1200
165 (366.01)	h	338.55	2.752 1195.9 1.5619	1217.4	58.99 2.997 1229.3 1.6011	78.99 8.084 1241.1 1.6144	3.170 1251.8	118,90 3,251 1262,4 1,6376	8.834 1272.8	8.533 1298.5	3.729 1323.8	4.114	4,491 1425.0	4.864 1475.9	5.234 1527.8	5,601 1579.7	5.967 1632.7
170 (868.42)	h	341.11	2.674 1196.3 1.5593	1216.5	2.903 1228.4	71.58 2.988 1240.5 1.6108	8.071 1251.8	111.58 3.151 1261.8 1.6837	3,232 1272.8	8,426 1298.2	3.617 1328.5	3.991 1374.2	4.357 1424.9	4.720 1475.7	5.079 1527.6	5.436 1579.6	5.701 1632.7
178 (370.77)	Ŀ	343.61	2.601 1196.7 1.5569	29.23 2.730 1215.6 1.5793	1227.6	1239.9	2.979 1250.8	1261.8	3,136 1271.9	3,325 1297.8	8.510 1823.2	8.878 1374.0	4.231	4.584 1475.6	4.932 1527.5	5.279 1579.5	5.624
180 (878,08)	h	346.07	2.532 1197.2 1.5545	1214.6	2.781 1226.8	66.92 2.812 1289.2 1.6030	2.892 1250.2	1260.2	3.045 1271.5	3,229 1297.4	8.410 1322 8	8.765 1873 7	4.112	4.455 1478.5	1577 4	5.132	5,400
185 (375.84)	ь	0.0183 348.47	2.466 1197.6 1.8522	1213.7	2.651 1226.0	64.66 2.721 1238.4 1.5992	2,809 1249.6	1260.8	2.958 1271.0	3.139 1297.4	3.815	3.861 1378.4	8.999 1424.8	4,333	4.664 1527 3	4.992 1670 R	5.814
190 (877,55)	ь	350.83	2,404 1198.0 1,5501	12127	2.576 1225 1	62,48 2,654 1237,7 1,5959	3.731 1249 0	102.45 2.804 1259.8 1.6199	2.877	8,058 1204 4	8,225	3.563	8.893	4.218	4.540	4.860	5.17
195 (379.70)	Sh V	0.0184 353.18	2,844 1198.4 1.5479	20.30 2.426 1211.7	40.80 2.505 1224 2	60,80 2,581 1287 0	80.30 2.656 1248 8	100,30 2,728 1250 2	120.80 2.799 1270.0	170.30 2.972	220.30 3.140	320.30 3.470	420.30 3.791	520.30 4.109	620.30 4.423	720.30 4.735	820.30 5.046
200 (881.82)	Bh T	0.0184 355.40	2.288 1198.7 1.5457	18.18 2.860 1210.8	38.18 2.487 1333.7	58.18 2.512 1226.3	78.18 2.585 1247.9	98.18 2.656 1258.7	118.18 2.726 1260.4	168.18 2.895 1995 8	218.18 8.050	818.18 3.381	418.18 8.097	\$18.18 4.005	618.18 4.311	718.18 4.616	818.18
		•															
205	h	0.01 84 357.61	1199.0	16.11 2.297 1209.7	36.11 2,372 1223.5	2.446 1288.4	2.518	96.11 2.587 1258.3	2.856 1269.0	2.831 1295.4	2.982 1321.0	8.297 1872.4	8,604 1423.5	3.906 1474.7	4.205 1526.8	4.502 1578.9	4.798 1632.1
	8Ъ		1,5436	14.07	84.07	84.07	74.07	94.07	114.07	164.07	214.07	814.07	414.07	514.07	614.07	714.07	814.07
210 (885.93)	h	0.0184 359.80 0.5488	2.183 1199.4 1.5417	2.237 1208.8 1.5527	2,311 1221.8 1.5676	2,384 1234.7 1,5821	2.454 1246.5 1.5951	1257.7	1268.5	1295.C	1820.7	1372.1	1423.3	1474.6	4.104 1526.6 1.8349	1578.8	4.683 1632.0 1.9025
116 (387.93)	h	301 05	2,134 1199.6 1.5395	1207 8	82.07 2,252 1221.0 1,5643	82.07 2.324 1234.0 1.5789	72.07 2.393 1245.9 1.5920	2.460 1257.2	2.526 1268.0	2.685 1294.6	2.839 1820.4	3.140	8.433 1423.1	3.722 1474.4	612.07 4.008 1526.5 1.8324	4.292	4.574
330 (389.89)	h	0.0185 864.05 0.5538	2,086 1199.9 1.5376	10.11 2,124 1206.8 1.5457	\$0.11 2.196 1220.1 1.5610	50.11 2.267 1238.2 1.5757	70.11 2.835 1245.2 1.5889	2,400 1256.7	2.465 1267.5	2.621 1294.1	2.772 1320.0	3.067 1371.6	3,354 1422,9	3.637 1474.2	1526.4	4.193 1578.6	4.469
228 (391,81)	, h	0.0185 366.11 0.5562	2.042 1200.2 1.5358	1205.8	28.19 2.142 1219,2 1.5577	1282 8	68.19 2.279 1244.5 1.5858	2.344 1256.2	2.407 1267.1	2,560 1293.7	2.708 1319.6	2.997 1371.4	3.278 1422.7	3.555 1474.1	1526.3	4.100 1578.5	4.369
330 (893.70)	h	368 16	1.9989 1200.4 1.5337	1204.9	2.091 1218.3	1231.6	1243.8	2,289 1255.6	2.352 1266.7	2.502 1298.3	2.647 1319.3	2.930 1371.1	8,205 1422.5	3.477 1474.0	808.30 3.744 1526.2 1.8247	4.010 1578.4	4.274
335 (395.66)	8h v h	0.0186 370.17 0.5609	1.9573 1200.7 1.5320	4.44 1.973 1203.9 1.5357	2.042 1217.5	2.110 1230.8	2.175 1243.2	84.44 2.237 1255.0 1.5925	2.298 1266.2	2.446 1292.9	2.589 1319.0	2.866 1370.9	3.138 1422.3	3.402 1473.8	3.864 1526.0	3.924 1578.3	4.183 1631.0
940 (397.40)	h	0.0196 372.16	1.9176 1200.9 1.5301		22.60 1.995 1218.6 1.5482	2.062 1230.0	2,126 1242.5		2.247 1265.7	2.392 1292.5	2,532 1318.6	2.805 1370.5	3.069 1422.1	3.330 1473.6	602.60 3.586 1525.9 1,8199	3.841 1578.2	4,09. 1631
345 (399.20)	h	0.0186 374.11	1.8797 1201.1 1.5283		20.80 1.950 1215.6 1.5450	2.015 1229.1	2.078 1241.8		2.198 1265.2	2,341 1292.0	2.479 1318.3	2.746 1370.3	3.000	3.261 1473.5	600.80 3.513 1525.8 1.8176	3.762 1578.1	4.01 1631
			Sh - a	unerhea	t des T					ъ –	enthair	v. B.t.u	per lb.				

Sh - superheat, deg. F.
v - specific volume, ou. ft. per lb.

h - enthalpy, B.t.u. per lb.
s - entropy, B.t.u. per deg. F. per lb.

TABLE 3. SUPERHEATED STEAM--Continued

Abs. Pre	 188																
Lb./Sq. Sat Ter	In.	Sat. Water	Sat. Steam							560°	\$00.	700	\$00°	9 00°		1100°	
\$50 (400.97)	h	378 04	1201.4	1.9065	1.9711	2.0334	2.0932 1253.2	2.1515 1264.7	1274.5	2.2920 1291.6	2.4272 1317.9	2.6897 1370.0	2.9444 1421.7	3.1949 1473.3	3.4416 1525.6	3.6867 1578.0	3.9 <u>199</u> 1631.3
\$55 (402.71)	8h V h	0 0187 377.91 0.5698	1.8079 1201.6 1.5249	17.29 1.8686 1213.7 1.5388	1.9288	1.9899	2.0489	2.1065	117.29 2.1626 1274.2 1.6041	2.2447	2.3776	2.6354	2.8855	3,1313	3.3733	3.6138	3.8524
\$60 (404,43)	Sh V h	0.0187 379.78 0.5720	1.7742 1201.8 1.5233	15.57 1.8246 1212.8 1.5359	35.57 1.8876 1226.6 1.5514	55.57 1.9482 1239.5 1.5656	75.57 2,0063 1252.0 1,5790	95.57 2,0631 1268.6 1,5912	115.57 2.1185 1273.8 1.6017	145.57 2.1991 1290.8 1.6188	195.57 2.3299 1317.1 1.6442	295.57 2.5833 1369.5 1.6914	395.57 2.8289 1421.3 1.7342	495.57 3.0701 1473.0 1.7737	595.57 3.3077 1525.4 1.8109	695.57 3.5437 1577.8 1.8456	795 57 3 7778 1631.1 1 8787
268 (406.12)	h	381.62	1202.0	13.88 1.7858 1211.9 1.5330	1225.7	1238.7	1251.2	1263.0	1273.4	1290.4	1316.8	1369.3	1421.1	1472.9	1525.3	1577 7	1631-1
370 (407.79)	h	383,43	1202,2	1.7486	1.8101 1224.9	1.8692 1238.0	1,9259 1250.6	1.9810 1262.5	1273.0	2,1131 1290,0	2.2399 1316.4	2.4847 1369,0	2.7210 1420.9	2.9548 1472.7	3.1838 1525.1	3.4112 1577.6	3.6370 1831.0
976 (409,44)	b.	385.22	1202.3	10.56 1.7127 1210.0 1.5271	1.7735 1224.1	1.8318 1237.3	1.8879 1250.0	1.9422 1262.0	1272.6	2.0725 1289.5	2.1973 1316.1	2.4382 1368.7	2.6714 1420.7	2.9002 1472.8	3.1253 1525.0	3.3486 1577.5	3.5704 1630.9
980 (411.06)	h	386.99	1202.5	8.94 1.6780 1209.0 1.5241	1.7381 1223.2	1.7957 1236.5	1.8512 1240.4	1.9048 1261.5	1272.2	2.0334 1289.1	2.1562 1315.7	2.8932 1368.5	2 6226 1420.5	2.8475 1472.4	8.0688 1524.9	8.2888 1577.4	3.5062 1630.8
385 (412.66)	ь	388.74	1202.7	7.34 1.6446 1208.0 1.5214	1.7040	1.7610 1235.6	1.8157 1248.7	1.8687 1260.9	1271.8	1.9955 1288.6	2.1165 1315.4	2.8499 1368.2	2.5756 1420.8	2.7968 1472.2	3.0143 1524.7	3.2300 1577.3	3 4443 1630.7
				:								•	•				
290 (414.24)	8) h	0.0189 890.47 0.5841	1.5947 1202.9 1.5137	5.76 1.6192 1207.0 1.5184	28.76 1.6710 1221.4 1.5346	45.76 1.7273 1284.5 1.5493	65.76 1.7815 1248.0 1.5685	85.76 1.8338 1260.4 1.5766	105.76 1.8853 1271.4 1.5879	135.76 1.9599 1288.2 1.6048	185.76 2.0783 1815.0 1,6307	286.76 2.9060 1867.9 1.6784	3,5302 1420,1 1,7215	485.76 2.7478 1472.1 1.7612	585.76 2.9616 1524.6 1.7984	685.76 3.1738 1577.2 1.8332	785 78 3.3844 1680.6 1.8663
395 (415.80)	8b 7 b	0.0189 892.17 0.5861	1.5684 1203.0 1.5122	4.20 1.5809 1206.1 1.5157	1.6391	1,6948	1.7484	1.8001	104.20 1.8510 1271.0 1.5857	1.9286	2,0413 1314.7	3.2677 1867.6	2.4863	1472.0	1524.6	3.1190	3.890 1680.i
800 (417.88)	Sb V b	0.0189 893.85 0.5879	1.5426 1203.2 1.5107	2.67 1.5506 1205.2 1.5130	22.67 1.6082 1219.5 1.5291	42.67 1.6634 1288.4 1.5448	62.67 1.7164 1246.6 1.5585	82.67 1.7677 1259.2 1.5718	102.67 1.8172 1270.5 1.5834	132.67 1.8896 1287.4 1.6004	182.67 2.0056 1314.4 1.6265	282.67 2,2286 1367.4 1,6742	382.67 2.4447 1419.7 1.7175	482.67 2.6547 1471.8 1.7572	582.67 2.8634 1524.4 1.7945	682.67 3.0670 1577.0 1.8294	782.6° 3.270° 1680 1.862;
\$10 (420.35)	ь	0.0189 397.16	1,4988 1203.5 1.5079	•	19.65 1.5495 1217.8 1.5240	39.65 1.6036 1231.5 1.5891	59.88 1.8558 1245.8 1.8839	79.65 1.7054 1258.0 1.6673	99.65 1.7546 1269.6 1.5793	129.65 1.8246 1286.4 1.5962	179.65 1.9375 1313.5 1.6224	279.65 2.1641 1866.9 1.6705	379.65 2.8631 1419.3 1.7138	479.65 2,6675 1471.5 1.7536	579.85 2.7682 1524.1 1.7909	679.65 2,9671 1576.8 1,8258	779 A 3,164: 1630 1,859
320 (423,29)) h	0.0190 400.40	1.4479 1203.8 1.5052		1.4943	1220.9	1.5982	1,6472 1256.8	96.71 1.6954 1268.6 1.5751	1.7687	1812.8	1366.3	1418,9	1471.2	1523.8	1576.6	1639
330 (426.16) h	0.0190 403.56	1.4048 1204.0 1.5028		1,4424	1,4944	1.5445	1.5025	93.84 1.6397 1267.6 1.5707	1.7064	1.8136	1365.8	1418.4	1470.8	1523.6	1576.4	1630
840 (428.96) b	406.65	1,3640 1204.2 1,4997		1212.2	1226.5	1341.0	1254.2	1200.0	1285.8	1811-4	1.000.2	1418.0	1410.0	1040.4	10/0.4	791 de 2.8k ² : 102: 5 1 8485
350 (431.71) h	409.70	1,3258 1204.4 1,4972		1,8472	1.3976	1.4460	1.492	1.5377	1.6016	3 1.7041 3 1310.6	l 1.8991 i 1364.7	2.0863 1417.6	2.2687 1470.2	7 2.4473 2 1523.0	5 2.6246) 1576 (1 788 6 1 2 7486 1 1020 6 1 1 51 6
860 (434.39) ì	0.0192	1.2889 1204.8	,	1,3085	1,8532	1.4008	1,4463 1251.	85.61 1.4909 5 1264.5 1.5587	1,5586	3 1.6534 3 1309.9	1,844] 1304.]	2.0266 1417.3	3 2,2044 2 1469.9	2.3784 1522.3	⊈ 2,550± 3 1575.⊧	3 2.72 3 163 v
			8h -	uperhea	t, deg.	F				h	enthal	y, B.t.u	. per lb	· R nar	13	,	

Sh = superheat, deg. F.
y = specific volume, cu. it. per lb

h = enthalpy, B.t.u. per lb.
a = entropy, B.t.u. per deg. F. per lb.

TABLE 3. SUPERHEATED STRAM—Continued

Aba, Pr															·		
Lb./Sq (Set. Te			Steam	150°	489°	Duos 500°	530°	640°	560°	500*	600.	T00*	800*	900*	1000*	1100°	1360
370 (4 37,01	Sh v h	0.0192 415.58	1.2545 1204.6 1.4921	22.99 1.3111 1221.4 1.5106	42.99 1.8579 1236.5 1.5268	62.99 1,4028 1250,2 1,5412	12424	102.99 1.4881 1275.2 1.5667	1,0350	1.5678	1.0068	1.7921	1.9703	2.1435	2.3131	2.4809	783.86 9.647 1830,1 1.8301
\$80 (439,59)	Sh v b	0.0102	1.2217 1204.7 1.4897	20.41 1.2711 1219.8 1.5063	40.41 1.3173 1235.0 1.5226	60.41 1,3614 1248.8 1,5371	80.41 1.4045 1262.8 1.8510	100.41 1.4452 1274.2 1.5630	120.41 1,4850 1286.0 1,5747	140.41 1.5232 1297.5 1.5859	160,41 1,5612 1308,4 1,5963	260.41 1.7428 1363.0 1.6455	360.41 1,9168 1416.4 1,6896	460.41 2.0859 1469.2 1.7299	560,41 2,2512 1522,2 1,7675	680.41 2,4148 1575.4 1,8027	760,41 2,5766 1620,1 1,2261
\$50 (442,11)	Sh V	0.0193	1.1904	17.89 1.2332 1218 0		57.89 1.3222	77.89 1.8647	97.89 1.4046	117.89	187.89 1.4812	157.89 1.5184	257.89 1.6961	857.89 1.8661	457.89 2.0311	557.89 2,1925	657.89 2.3521	757.84 2.510
400 (444 ,58)	Sh V	0.0193 424.02	1.1609 1204.9	15.42 1.1972 1216.5		55.42 1,2849 1945 9	75.42 1.3269	95,42 1,3660	115.42	135.42 1.4413	155,42	255.42 1.6523	\$55.42 1.8179	455.42 1.9796	555,42 2.1367	655.42 2.2926	755.41 2.4474
410 (447,00)	Sh v	0.0194 428.74	1.1327 1205.0	13.00 1.1628 1214 6		53.00 1,2494	73.00 1,2906	93.00 1.3291	113.00	133.00 1.4038	158,00 1,4390	253.00 1.6095	853.00 1.7722	458.00 1.9297	553.00 2.0837	653.00 2,2359	753.00 2,3864
4 10 (449.38)	Sh V	0.0194 429.42	1.1058	10.62 1.1300 1213.0	30.62 1,1738 1228,6 1,5060	50,62 1,2156 1242 1	70.62 1.2561	90.62 1,2942	110.62	180.62 1.8671	150.62 1.4021	250.62 1,5693	850.62 1.7285	450.62 1.8826	550,62 2,0332	650.62 2.1819	750.63 2.3290
480 (451.72)	Sb v h	0.0195 432.05	1.0800 1205.0	8.28 1.0986 1211.2		48.28 1.1884 1241 7	58.28 1.2233 1254.3	88.28 1,2607	108.28	128,28 1,3326	148.28	248,28 1,5309	348.28 1,6869	448.28 1.8377	548.28 1.9850	648.28 2.1305	748.34 2.3743
440 (454,01)	Sh y h	0.0195 434.03	1.0554 1205.0	5.99 1.0688 1209.6	25.99 1.1116 1325.3 1.4981	45.99 1,1524 1240 2	65.99 1.1918 1255.0	85.99 1.2288 1268 0	105.99 1.2648	135.99 1.3996	145.99	245.99 1.4948	845.99 1.6472	445.99 1.7949	545,99 1,9390	645.99 2,0814	745.99 2.2220
					-		•					·					
450 (456,27)	n	5.37.1A	12010.11	1207.0	28.73 1.0 824 1223.7 1.4941	1,1230	1.1617	1.1982	1.2337	1.3681	1,3013	1.4593	1.6092	1.7539	1,8951	2.0345	2.1720
460 (458,48)	8b •	0,0196 439,69 0,6384	1.0092 1205.0	÷.	21.52 1.0545 1222.0	41.52 1.0946 1237.2	61.52 1.1329 1252.5	81,52 1,1690 1265,8 1,5354	101.52 1.3089 1279.0	121.52 1.5379	141.53 1.2706 1202.2	241.52 1.4258	841.52 1.5729	441.52 1.7147	541,52 1.8530	641.52 1.9896	741.52 2.1248
470 (460,66)	ь	0.0196 442.17 0.6411	1205.0		19.84 1.0278 1220.2	39.34 1,0676 1235.7	59.34 1.1058 1251.2	79.84 1.1410 1264.7 1.5821	99.34 1.1755 1278.0	119.34 1,2091 1290.0	139.34 1,2412 1301 5	289.84 1.3987	339.34 1.5381	439.34 1.6772	539.34 1.8127	639.34	739.34 2.0785
486 (462,80)	b b	0.0197 444.60 0.6436	1205.0		17.20 1.0021 1218.6	37.20 1.0416 1234.2	57.20 1.0789 1249.9		97.20 1.1482 1277.0	117.20 1,1812 1280.1	187,20 1,2131 1300.8	237.20 1.3630 1357.5	337.20 1,5049 1412.1	437.20 1.6413 1466.0	587.20 1.7742	637.20 1.9054 1573.3	737.20 2.0847
490 (464.91)	h	0.0197 447.00 0.6462	1204.9		15.09 0.9774 1317.0	\$5.09 1,0166 1232.7	55.09 1.0535 1248.4	75.09 1.0884 1262.3 1.5256	95.09 1,1220 1276.0	115.09 1,1548 1288.3	135.09 1,1860 1300.0	285.09 1,3385 1856 9	\$35.09 1,4729 1411 7	435.09 1.5067	535.09 1.7371	635.09 1.8639	735.09 1.9927
500 (467,00)	þ	0.0197 449.40 0.6488	1204.9		18,00 0.9538 1215.3	33.00 0.9926 1231.4	\$3.00 1,0290 1246.6	73.00 1.0636 1261.1 1.5225	93.00 1.0969	113.00 1,1292 1287 3	138.00 1.1600 1200 3	233.00 1,8051	333.00 1,4417	433.00 1.5735	533.00 1.7016	633.00 1.8280	733,00 1,9632
\$10 (469.05)) h	0.0198 451.75 0.6518	1204.8		10,95 0,9310 1218,5	30.95 0.9695 1229.6	50.95 1.0056 1245.6	70.95 1.0397 1259.9 1.5192	90.95 1,0727 1274.0	110.95 1.1046 1286.6	130.95 1.1850 1298.4	230,95 1,2780 1355.7	830.95 1.4127	430.95 1.5418	530.95 1.6675	630.95 1.7915	780.98 1.9138
520 (471.07)) b	0.0198 454.07 0.6587	1204.7		8,93 0.9091 1211.8	28.93 0.9472 1228.1	48,93 0.9829 1244.2	68,93 1,0169 1258,6 1,5160	88.93 1.0494 1272.9	108.93 1,0810 1285.6	128.93 1,1110 1297.6	228,93 1,2519	328.93 1.3844	428.93 1.5113	528,93 1,6347	628.93 1.7565	728.93 1.87 63
530 (478,05)) h	0.0199 456,35 0.6562	1204.6		8,95 0.8879 1210.0	26.95 0.9258 1226.5	46.95 0.9612 1242.8	66.95 0.9948 1257.3 1.5130	86.95 1,0269 1271.8	106.95 1,0582 1284.8	126.95 1.0878 1296 8	226.95 1,2267 1354 6	326.95 1.3571	426.95 1.4818	526.95 1.6031	626.95 1.7228	726.95 1.8402
		-	8h - •u	perheat	deg. F					h - e	nthalpy	, B.t.u.	per lb.				

Sh = superheat, deg. F. v = specific volume, ou. it. per lb.

h = enthalpy, B.t.u. per lb. a = entropy, B.t.u. per deg. F. per lb.

TABLE 3. SUPERHEATED STEAM-Continued

TABLE 3. SUPERHEATED STEAM- Communed																
Abs. Pre Lb./Sq. 1 Sat. Tem	ln. Sa lp.) Wa	t. Sat. ter Stear	TEMPE	BATURE- 510°	-Dron 540°	sea Fax 560°	SSO°		650°	700°	750*	800°	900°	1000~	1100°	1205
540 (475.02)	b 458	.62 1204	24.98 6 0.9051 5 1225.0 5 1,4781	1241.4	0.9736 1256.1	1.0054 1270.7	1.0363 1283.8	1,0655	1.1356	1.2025 1354.0	1.2671	1.3309 1409.6	1.4535 1463.9	1.5727 1517.8	1.6903 1572.0	1.8068 1626.2
350 (476.94)	h 460	$.83 \cdot 1204$	23.06 6 0.8851 4 1223.4 8 1.4748	1240.0	0.9530 1254.8	0.9846 1269.6	1.0151 1282.9	1,0441 1295,2	1.1132 1324.9	1.1791 1353.5	1.2428 1381.6	1.3055 1409.2	1.4262 1463.6	1.5434 1517.5	1.6590 1571.7	1.7724 1626.0
560 (478.85)	h 463	.04 1204	21.15 3 0.8658 3 1221.8 0 1.4714	1238.5	0.9332 1253.5	0.9844	0.9947 1282.0	1.0233 1294.4	1.0917 1324.2	1,1566 1352.9	1.2193 1381.1	1.2810 1408.7	1.3998 1463.2	1.5151 1517.2	1.6239 1571.5	1.7403
570 (480.73)	h 468	.22 1204	19.27 4 0.8472 1 1220.2 2 1.4681	1236.9	0.9141 1252.2	0.9450 1267.3	0.9749 1281.0	1.0033 1293.5	1.0708 1323.5	1.1348 1352.8	1.1966 1880.5	1.2575 1408.3	1.3744 1462.9	1.4879 1517.0	1.5998 1571.3	1.7098 1625.6
580 (482.58)	h 467	.87 1204	17.42 8 0.8291 0 1218.6 4 1.4648	1235.5	0.8956 1250.9	0.9263	0.9558 1280.0	0.9839 1292.6	1.0506 1322.8	1.1137 1851.6	1.1747 1880.0	1.2347 1407.8	1.3498 1462.5	1.4616 1516.7	1.5714 1571.0	1.6794 1625.4
590 (484.41)	8h v 0.0 h 469 s 0.6	201 0.783 50 1 203 699 1. 44 3	15.59 31 0.8116 .8 1217.0 77 1.4616	35.59 0.8455 1234.0 1.4791	0.8778	0.9082	0.9373	0.9653	1.0310	1.0984	1.1535	1.2128	1.3262	1.4360	1.5442	1.6506
600 (486.21)	h 47	1.59 1208	13.79 95 0.7945 .6 1215.6 30 1.4586	1232.5	0.8605 1248.3	0.8907 1263.7	0.9194 1278.1	0.9471 1290.9	1.0128 1321.4	1.0738 1850.5	1.1832 1379.0	1.1915 1407.0	1.3032 1461.8	1.4115	1.5179 1570.5	1.6224 1625.0
610 (487.99)	Bh ▼ 0.0 h 47 • 0.0	202 0.75 3.67 1203 748 1.44	12.01 65 0.7781 .5 1213.8 44 1.4552	82.01 0.8120 1280.9 1.4728	0.8436	0.8736	0.9023	0.9296	0.9942	1.0548	1.1135	1.1708	1.2809	1.3878	1.4928	1.5964
										•						
620 (489.75)	8h v 0.0 h 478	202 0.743 5.72 1203 764 1.443	10.25 18 0.7622 .8 1212.2 17 1.4520	30.25 0.7960 1229.5 1.4698	50.25 0.8275 1245.5 1.4860	70.25 0.8572 1261.3 1.5016	90,25 0,2506 1275,8 1,5187	130.96 0.9127 1289.1 1.5284	160.25 0.9765 1319.9 1.5568	210.25 1.0364 1349.3 1.5827	260.26 1.0943 1377.9 1.6068	310.25 1.1505 1406.1 1.6296	410.25 1.2596 1461.2 1.6717	510.25 1.3648 1515.5 1.7102	610.25 1.4677 1570.1 1.7464	710.25 1.5707 1624.7 1.7803
630 (491.49)	h 477	.75 1203	8.51 16 0.7466 .1 1210.6 10 1.4488	1227.8	0.8117	0.8413 1260.1	0.8694	0.8963 1288.3	0.9595 1319.2	1.0187 1348.7	1.0757 1377.4	1.1312 1405.7	1.2387 1460.8	1.3423	1.4445	1.5449
640 (493.21)	Sh v 0.0 h 479 s 0.6	203 0.719 .79 1202 806 1.439	6.79 07 0.7317 9 1209.0 14 1.4458	26.79 0.7651 1226.8 1,4686	0.7963 1242.7	0.8258 1258.9	0.8537 1273.6	0.8804 1287.4	0.9429 1318.5	1.0015 1348.2	1.0578 1376.8	1.1124 1405.2	1.2187 1460.5	1.3210 1515.0	1.4213 1569.7	1624 8
650 (494.90)	h 48	1.73 1202	5.10 32 0.7171 .7 1207.3 79 1.4427	1224.8	0.7816	0.8107 1257.6	0.8384 1272.5	0.8648 1286.5	0.9269 1317.8	0.9846	1.0404 1376.3	1,0944	1.1988	1.2999 1514.7	1,3987 1569.4	1.45
\$60 (496.58)	8h v 0.0 h 485 s 0.6	204 0.69 3.77 1202 847 1.43	3.42 39 0.7031 .5 1205.7 33 1.4396	23.42 0.7361 1223.2 1.4576	0.7872	0.7962	0.8237	0.8499	0.9113	0.9686	1.0234	1.0769	1.1803	1.2797	1.3774	1.4
670 (498.23)	h 48	5.61 1202	1.77 31 0.6892 3 1204.0 49 1,4367	0.7224 1221.7	0.7531 1238.7	0.7820 1255.1	1270.2	0.8354 1284.5	0.8963	1346.3	1375.3	1.0599	1459.4	1,2600	15 ::	1623 5
680 (499.87)	h 48	204 0.67 7.64 1202 886 1.43	.1	1220.2	1237.3	1253.9	80.13 0.7954 1269.1 1.5004	1283.6	1315.6	-1345.8	1374.7	1403.4	1459.0	1513.8	568	20.20
590 (501,49)	h 48	205 0.66 9.56 1201 906 1.43	.8	0.6956	1235.8	0.7549	78.51 0.7818 1268.0 1.4978	0.8075	0.8675	1345.1	0.9758 1374.2	1.0272 1402.8	1.1267 1458.7	1,2223 1513.6	1.3162 1568 5	1.4"
700 (503.09)	ь 49	0205 0.65 1.49 1201 1925 1.43	6	1217.1	0.7133	0.7419 1251.3	76.91 0.7687 1266.8 1.4953	0.7941 1281.9	0.8534 1314.3	0.9034 1344.6	0.9608 1373 7	1.0117 1402.5	1.1096 1458.2	1 2043 15 3 4 1.6959	1.2965 1568s2	1623 1763

Sh - superheat, deg. F.
v - specific volume, ou. ft. per lb.

h = enthalpy, B t.u. per lb. s = entropy, B t.u. per deg. F. per lb

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -8 Steam Tables
 - A Assignment
- 1. (a) Define "quality" of wet steam.
 - (b) Define "per cent" of moisture.
- 2. Determine enthalpy of superheated steam at 600 psia and 800°F.
- 3. Steam admitted to the NPD turbine is dry saturated and has a temperature of 450°F. Determine enthalpy and density of the steam.
- 4. Steam exhausted from the above turbine into the condenser has a moisture content of 11%. Calculate enthalpy of the steam if temperature in the condenser is 95°F.

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -9 Air and Steam

O.O INTRODUCTION

In this lesson we will discuss the properties of a mixture of air and steam and define some of the terms which are frequently used, such as relative humidity and dew point.

1.0 INFORMATION

Pure dry air is a mixture of oxygen and nitrogen. It also contains negligible amounts of rare gases, such as argon. Air, as we find it all around us, however, contains moisture in varying amounts, and can be regarded as a mixture of air and steam.

How can we get steam at atmospheric pressure and low temperatures? The answer is that while the mixture is at atmospheric pressure, the water vapor is not. It is actually at extremely low pressure. And since we know from the previous lessons that the temperature at which water boils or vaporizes gets lower as pressure goes down, we can see that, at these extremely low pressures, water will exist in the form of steam even at ordinary temperatures say, 70°F.

1.1 Partial Pressures

These low pressures come about because if we mix any two gases in a given space, each acts pressure-wise as if the other did not exist. Each is under the pressure it would have, if it occupied the space by itself. Pressure of the mixture is the sum of the two partial pressures. The last statement is known as Dalton's Law, which is defined as follows:

"Dalton's Law":

If two or more gases exist as a mixture in a closed vessel, the total pressure exerted by the mixture on the walls of the vessel will be equal to the sum of individual pressures exerted by the gases making up the mixture.

To see how this works, let us start with steam at 70°F. Its absolute pressure at that temperature is approximately 0.36 psia and density 0.0011 lb/ft³. (see lesson on steam tables. Sample Problem No. 6). This means that 0.0011 lb. of dry saturated steam at 70°F would fill one cubic foot. Now if we add enough air to make one cubic foot of mixture, what do we have? Total pressure, we know will be atmospheric pressure, say 14.70 psia. Then the partial pressure of the air must be 14.70-0.36 or 14.34 psia.

We remember from the previous lessons that for any given pressure there is one temperature at which steam starts to vaporize or condense. This is known as saturation temperature. It depends entirely on the pressure being lower at lower pressures. Furthermore, steam at any given pressure and saturation temperature has a certain density.

For convenience, let us put down some of the figures (extracted from the steam tables given in lesson on steam tables) corresponding to the range of temperatures of moist air that are of practical interest to us.

Saturation Temperature	Corresponding Pressure	Spec. Vol. of dry sat. Steam	Density of dry sat. Steam
deg. F	psia	v , ft $^3/lb$.	$w = \frac{1}{v}$, lb/ft^3
40 50 60 70 80 90	0.12170 0.17811 0.2563 0.3631 0.5069 0.6982	2444 1703.2 1206.7 867.9 633.1 468.0	0.0004 0.0006 0.0008 0.0011 0.0016 0.0021

Now let us assume we have a cubic foot of moist air at 70° F and we find that it contains 0.0004 lb. of moisture. A glance at the table above shows that at 70° F a cubic foot will hold .0011 lb. of steam. Since we have less, the steam must be superheated, and the table tells us how much: 70 - 40. or 30° F.

1.2 Relative Humidity

We can see that our cubic foot holds less moisture than it could hold. The term "relative humidity" is a measure of this. Here we have 0.0004 lb. when we could have 0.0011. Ratio is 4 = 0.36 or 36%.

This is relative humidity. Thus denoting relative humidity with the symbol \emptyset (phi) it can be defined as follows:

 $\emptyset = \frac{\text{Actual vapor density}}{\text{Density, sat. vapor at mixture temperature.}}$

1.3 Tirwpoint

Now let us take our mixture, with 0.0004 1b. of moisture in a cubic foot, and cool it down. Referring to the table again, we see that if we cool it to 40°F, it will be holding all the moisture a cubic foot can hold at that temperature. It has 100% relative humidity. Such a mixture is called saturated. If we try to cool this mixture further, some of the steam will condense. Temperature at which this condensation starts, in this case, 40°F, is the dew point temperature.

As we can see, the dew point of any mixture of air and water vapor depends entirely on how much moisture is present. For example, of 50°F.

D.G. Ducck

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -9 Air and Steam
 - A Assignment
- 1. Define "Dalton's Law".
- Define "Relative Humidity".
- 3. Explain briefly the meaning of the term "Dew Point Temperature".
- 4. A cubic foot of a mixture of air and steam at 80°F contains 0.0008 lb. of moisture. How much is the steam superheated?

2 - Science Fundamentals - T.T.3

5 - Heat & Thermodynamics

-10 - Dew Point Hygrometer

O.O INTRODUCTION

This lesson will describe the Dew Point Hygrometer and demonstrate how this instrument is used to measure relative humidity of the air.

1.0 <u>INFORMATION</u>

In the usual form of these instruments, (see Figure 1), means are provided for cooling and observing the temperature of the surface which is exposed to air. The temperature at which visible condensation occurs on the surface is considered the dew point of the air. With the dew point temperature known, the relative humidity and other properties of the air can be calculated or taken from tables and charts. A bright surface or metallic mirror is usually employed to improve the visibility of the dew deposit and various means are used to cool the mirror from the back, including evaporating ether or another refrigerant, or a stream of air passed through dry ice. Dew point temperatures, in some cases, are observed by means of thermometers in fluids in contact with the back of the mirror, but in modern instruments, thermocouples are used, and are soldered or welded to the mirror itself.

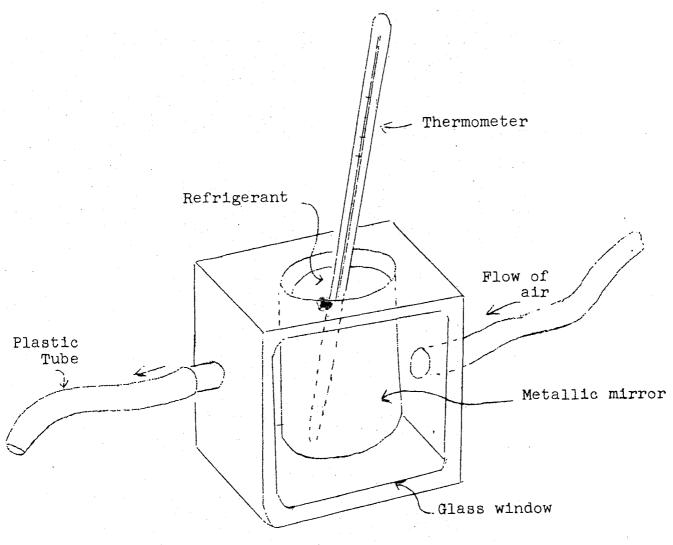


Fig. I

Sample Problem

A dew point hygrometer is used in the NPD Fan Room to measure the dew point of the air leaving the plant. What is the relative humidity of the air at 70°F if the dew point temperature is 50°F?

From the steam tables

at 50°F,
$$v = 1703.2$$
 ft³/lb, $w = \frac{1}{v} = 0.0006$ lb/ft³.
at 70°F, $v = 867.9$ ft³/lb. $w = \frac{1}{v} = 0.0011$ lb/ft³.
 $\emptyset = \frac{0.0006}{0.0011} = 0.545 = 54.5\%$

D. Dueck

- 2 Science Fundamentals T.T.3
- 5 Heat & Thermodynamics
- -10 Dew Point Hygrometer
- 1. Describe briefly, the dew point hygrometer.
- 2. What is the relative humidity of the air at 75°F if the dew point temperature is 45°F?