
•

Before taking up the main business of the chapter, we pause briefly to
make a few comments regarding three kinds of time dei'intives used in the
text. We might iIlust<ate them with a homely example-namely the problem
of reporting the concenl....tion of fish in the Kickapoo River. Because the
fish are moving, the fish concentration e wiil be r. function of position
(z, y, z) and time (I).

The Partial T,me Derivative, ae/at

Suppose we stand on a bridge and note how the concMlration of fish
just below us changes with time. We are obselving then how the conr.entra­
tion changes with time at a fixed position in space. Hence by ae/al we mean
the Upartiai ')f c with respect to i, holding x, y, z constant:'

Total Time Derivative, d~/dt

Suppose now that insteaG of standing on the bridge we get in a moterboat
and speed around on the river, sometimes going upstream, sometimes across
the current, and pe.haps sometimes downstream. If we report the c.hange
(\f fish concentration with :-espect to time, the numbers we report must also
reflect the motion of the boat. The total time derivative is given by

de = ae + ?.= dz+ an dy + ~~ dz (3.1)...1)
dt al axdt ay dt az dt

;n which dx/dt, dy/dt, and dz/dt are the comj>onents of the velocity of the
boat.

Substantial Time Derivative. Dc/Dc

Suppose that we get into a canoe, and, not feeling energetic, we simply
float along coun~ing fish. Now the velocity of the observer is just the ~aI:1.e

as the velocity of the stream v. When we report the change of fish concentra­
tion with respect to time, the numbers depend on the local stream velocity.
This derivative is a special kind of total time derivative and is called the
"substantial derivative" or somet:mes (more logically) thL "derivative
following the motion." It is related to the partial time derivative as follows:

Dc = DC + v ac + v ac + v ae (3.1)...2)
Dt at ' ax • ay • az

in which Dz , VII' and Oz are the components of the local fluid velocity v.

The reader should thoroughly master the physical meaning of these three
derivatives. P.emember that ae/at is the derivative at a fixed point in space
and Dc/DI is a derivative computed by an observer floating downstream
with the fluid.
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Selected differentials from a condensed
collection of thermodynamic formulas
/"Iy P. W. Bridgman

tiny partial derivative of a state variable of a thermodynamic system. with respect
'0 any other state variable. a third variable being held constant [for "ample,
10"/0")t) can be written. from Eq. (4-20). in !he form

(OU/Oz),.
(ou/ov)t = (ov/oz),.

where z is any arbitrary state function. Then if one tabulates the partial derivatives
"f all ,tate variables with r"pect to an arbitrary function =, any partial derivative
C.1n be obtained by dividing one tabulated quantity by another. For brevity,
u"I\'atives of the form (ou/oz)t are wrincn in thc table below in the symoolic
10'01 (au),.. Then. for example,

!!..£g.nstant

(oPl. = -cr

(oT), = v - T(ov/OT)/.

(avh = -c,.(av/ap),. - T(~v/oT)~

+ v(o"/oT) ,.

(a,), = vcpiT

(eq). = VCr

(ow), = -P[cp(o,,/ap)T + T(o'J/aT»).

- v(ov/oT)I']

s constant

g constant

(oP), = ,

(oT), = v
(ov), = v(ovlon,. + ,(ov/ap),.

(as), = 1. [vc,. - sT(ov/oT),,)
T

(oq), = -,T(ov/oT),. + '·C,.
(ow), = P[v(ov/oT),. + ,(ov/o?)',1

v constant

(
aU) = (ou)t = T(ov/oT),. + P(OV/OP)T = T{J _ ?
av l' (av),. -(ov/oP)T K'

which agrees with Eq. (6-9). Ratios (not derivatives) such a, d·q"ld,,/. can bo
treated in the same way. For a further discussion. see A C""del1,ed Collec/ion of
Thrrmod)"amic, Formula, by P. W. Bridgman (Hervard University Press, 1925).
from which the table below is t.ken.

l' constant

(aTl r = 1

(a"),, = (avloT),.

(0,),. = c,.IT

(aq)" = c,.
(ow)r = p(ov/oT),.

(au)r = c,. - p(a,,/oT),.

(ah)r = c"
(ag)r = -,

(OJ)r = -, -P(ov/oT),.

Tconstant

(ap)T=-l

(av),. = -(av/ap)"

(as)T = (a"/aT),,

(oq),. = T(a,,!aT),.

(ow),. = - p(ovlo?)T

(ou)T = T(av/on,. + P(ov/oP),.

(01,)1' = - V + T(o,'/ilT),.

{dgh = -(1

(OJ)T = P(ov/oP)'.

(oPi, = -cp/T

(oT), = -(ov/aT)p

(ov), = - 1. [cp{ov/OP)T + T(ov/oT);.)
T

(oq), = 0

(ow), = - i [cp(ov/oP),. + nov/aT»).]
T

P .
(ou), = - [cI.(OV/OP)T + (T a,·(oT)~.l

T

(oh), = --vC,ofT

1
(i!g), = - - [vcI' - ,T(o,,/aT),.]

T

(Of), = ~ [Pc,.(OV/OP)T + PTrov/on).

+ ,T(ov/oT),.)

(oP), = -(ov/oT),.

(oT)" = (Dv/oP),.

1
(a,), = - [cl.(ov/oP),. + T(a,/ilTll·\

T

(eq), = CI'(ov/OP),. + T(al/aTI;

(ow), = 0
(au), = ".(OV/OP)T + nal/On;.

(oh), = c,.(o%?),. + T(arjanj.
- l( Ol/On,.

(og), = -v(ov/eT)" - S(ol/oPI'r

(an, = -'(OV/of)T
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.~bstr.ct--For thermalhydraulic systems analysis. liuear interpolation algorithms are commonly used for
the calcuiaticn ofthetmodynamic properties. However. tht;se algorithms can use a substantial amo~nt of
computer time and n:em0ry. An altentative to this approach suggested in the past is the use of
approximation fernnulas_ Such formulas f~lr the calculaiion of the thermodynamic prop:rties of light water
for saturation conditions are presented here, ba·"ej on the 1984 NBS/NRC Sleam Tobles_ Th~ range of
these approximations is from below 1b to just below the critical i'oint (22.055 MPa) with £. cieviation from
tabulat.:e val'Jes of not mC're wn 0.22%. Tbf; formul:.:t.s were determined by tne methvd of le<>.5t squares.
en2.biing a minimization of deviat;ons from the li~~ of best fit and the f.ttillg of ft.:f1ctions Simple enough
to be used with programmable calculators. as wdl as microcomruters. In addition to the rapid calculation
of the properties. the simple curve fits are instrumental ir, the development ')f th: rate form of the equation
of state.

Since any given property cannot be accurately fitted over the er:tile pressure raage with a singl~ simple
expression. the pressure r..nge 'Was split into s·....branges. S{X"C;al cue was taken to ensure that the s!C'pes
of the curve fite; were continuous across the boundaries sinCt': discontinuities in the slo;Jes of the property
tables can <:ause instabilities and fail-..Jre of seuch algorithms in typical oor.1puter codes.

IU!y WoraS: watet" properti:s. curve fit. fast. satura~ion.

lNTRODUCTION

In the analysis of flow systems, the thermodynamk properties are usually Calculated by linear
inte'lJolation algorithms applied to thermodynamic tables stored on computer. However, the
storage of these steam table,) can occupy a large amount of comput.er memory. As well. the linear
interpolation algorithms require a searching algorithm to select the proper numbers from the tables.
Thus the use of such algorithms can considerably tax conpl'.ter running time. An alternative to
this method is the employment of approximate formulas. similar to those described by Firla (1984),
which oa,.. rapidly compule the value of a property with satisfactory accuracy for the purpose of
system analysis.

This paper concentrates on the thermodynamic properties of light water for saturation
conditions. At saturation. the temperature can be ~xpressed a~ a function of pressure oilly.
Therefore. we can represent the properties by a number of siillple functions containing one
independent variable: pressure.

In 2.ddition to the direct caJculation of thermodynamic properties, thes~ 2.pproximation functi0ns
can be applied to the determination of the rate form of the equation of state (Garland & Sollychin
1988).

APPROXIMA TION METHOD

The approach taken in developing the correlations minimized the deviations from the reference
steam tables. To maintain a high accuracy it was necessary to subdivide the range of pressure
variation into several regions. The simple functions used were fitted to the data by the method of
least squares, as discussed in the following section.

As system codes often require the slopes of tho properties. the fits to the steam table by a set
of approximation functions. were required to exhibi~ a continuoas first derivative across the entire
range of pressure.

3JJ
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Le~t-squares method

We represent a set of r. data points by some relationship y = I(x), containing p unknown
parameters a\, a2' ... , apt the deviations or residuals are given by

D, = I\x,) - Yi' [I)

The sum of the squares of the deviations,

• •
S = LVI=" L [((x,) - y,)',

I-I I_I
[2)

is a function of a•• a2' ...• or The parameters are dctcnnined such that S is 2. minimum
(dS/dc, = 0, dS/da, = 0, ... , dS/da, = 0).

If we take Y =I(x) to be a linear function (y = a, + a,x), tile residuals are Di = (a, +a,x,) - y"
so that

S = (a, + o,x, - Y,i' + (a, + a,x, - y,)' + ... + (a, -I- a,x. - y.)'.

On differentiating S wi:h respcct to a, and a" two equations aro obtained:

dS
- = 2(a, + a,x, - y,) + 2(a, -i- a,x, - y,) + ... + 2(a, + a,x. - y,) = 0
da,

and

[3)

dS , ,
da, = 2(x,)(a, + a,x, - y,) or 2(x,)(a, + a,x, - y,) or .. T 2(x.)(a, + a,x, - Y.) = 0 [4]

Dividing \)y two and co\iecting the coefficients of ", and a" we get

r.a, + (± x,)", = i: Yi
I_I i_I

and

(. ' (. \ .L x,)a, +L xi)a, = L X,Y,·
1-\ I_I I_I

Similarly, for a second-order polynomiai (quadratic equation):

4a, +(i: x,)a, +(i: xi)'aj = ±Y..
I_I I_I /-1

(i: x,)a, + (i: xi)a, + (i: xi)'a J = i: X,Y..
, .. I , .. \ ,_[ 1.. 1

and

[5]

[6a]

[6b]

[6c]

These equations can be solved for a l • il:! and il3 to give the function y = il\ -i- il2 X + Q3X:!, Higher
order polynomials may also be fitted in this manner, of course.

Correlations are often described by a correlation constant, r. This number expresses the strength
and direction of the correlation artd ca!1 'vary from + 1.CO to - 1.00. For positive correlations where
an increase in one variable tends to lead to an increase in the other variable being considered, ,
is positive. For negative correlations where an increase in one variable tends to lead to a decrease
in the other. r is negative. The largest magnitude of, is LOO which represents a perfect correlation.
Thus the closer the points in a plot of the two variables come to falling on the line of best fit, the
nearer r will be to + 1.00 or - 1.00. The following section describes different types of functions
that can be determined using the method of least squares. The correlation constant can be used
as a way i:o ~ompare each function and to see if the range being fitted is too large to obtain a high
enough accuracy with the steam tables.



APPROXIMATION FUNCTIONS FOR CALCULATION OF THERMODYNAMIC PROPERTIES

Table I. Transforming functions into a linear form

Function Operations on data Linear fonn

335

y=ax·
y =-"aexp(bx)
y=alogx+b

a I
y"",-+b x--

x x
x~logx

y~k>gy

y~logy

x~logx

y~aG)+b

(logy) = b(logx)+ 10. a

(logy) = bx + toga
y = a (10g x) + b

The correlation constant for y = ax + b is calculated as

Similarly, for y = ax' + bx + c,

r")', , , \L Y,
eLY, + b L (x,y,) + a L (xi y,) - ..0.',-=-.:..'-'-

i_I i-I i_I n

r = ,( i>,')'
L (y,)' _ ,,- '--
i_I n

[7]

[8]

Using least squares for other functior.s

Data can be approl<imated by other fuuctions which include power, exponential and logarithmic
forrr.s. The coefficients of each of these functions can be dete=ined using [5] by altering the data,
as shown in table 1. to transform the functions into a linear form. The power functlcn and the
exponential function are expected to be useful in producing an accurate curve fit of the
thennodynamic properties. However, the method of least squares determines these functions such
that x =0 for y =O. To obtain better accuracy with these curves, we ca:1 shift the data by adding
to or subtracting from the x and J' values. For example. figure l(a) shows two curves passing

y I
I

I
I

/
2 /

/
;'

/
;'

'"
x

tal (b)

x

Figure 1. Example of data shifting. (a) The solid line rei-Jresents the best-fit curve as determined by sight.
The dashed line represents the best·fit power ~rve as dete.-mind by the method of least squares. (b) The
y values in (a) have a constant value, Yo. subtracted from them sueh that the solid line passes through
the origit•. The dashed line is now more comparable to the solid line and is given by y - Yo =ax·. where

a and b are found using [5].
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y
x X

x

(aJ

x

-y

X

X

~XXXI )< -y+Y,

I X
XIx

(b)

X
X

(el

X

X

X

x

Figure 2. Deaiing with neg3.tive sloping curves. (a) The actual data points are plotted. The slore ofa curve
passin& th!"ou~h th~ points is negative. From figure 1, C'De can see that the shift that would produce
the most. acc\!ra~t' fit makes all ~ - Yo) value!. negativ.:: in this CAse. (b~ The negative y values are ploued
here. loe slore of a curve passmg thr::>u~h the::;e poir,ts is positive (::) TIl: negative y vaiues art: shifted
upward J)y a constant, Yo. suell that aU y" = - y + Yo are positive. The method of leasl squares can now
be used for the power and exponential func:ions. For tl'>e power function. (he equatiC'n det~ed bv

least squares is given by y = Yo - QX b• •

through a set of points. Curve I is the hest fit, as detenr.ir.ed by sight, and curve 2 is the hest fit
of a power function, as detennined by the method ofk"st squares, without ohiftin. the data. Fi.ure
Itb) shows the two curves after a const2.ilt. Yo, has be~n subtracted from each~}' value. \Ve~can
see the effectiveness of a shifting of data. By comparing the correlation constants for different shifts,
one c"n determine '-'"hich shift gives the m;>,t accurate curve fit. The shifting of Ille data should
be done before the op~rations described. in table ! are carried (IUt.

In some circumstarlces, such as when there is a d,~creasc in y for an increase in x~ the necessary
shifting of data would produce negative values either in the x or y direction. To avoid takillg the
log of a nega tive number we can tit the negative of th~ J' values. Figure 2 demonstrates this
procedure.

CORRELATIONS OF LIGHT·WATER THERMODYNA\1IC
PROPERTIESt

The following thennodynamic properties of light water at saturation were fitted to approxi­
mation functions: (I) specific volume/density, (2) specific enthalpy. (3) saturation temperature. (4)
specific entro;>y, (5) specific beat and (6) dynamic viscosity. The reference source of data ior all0' these properties, with the exception of viscosity, is the NBS/NRC Steam Tables (Haar ~[ al.
:984). The subro~tines by Sokoln:k;>ff & Recheffer (1966) were used for the calculatior. of the
above properties.

These :::ubrout.ines were a!so used in conjunction with the tquation for viscosity given by White
(1975/1933). This combination was shown to yield an adequa:e representation of v;scosity by
Kamgar-Parsi & Sengers (1982).
Th~ set of functions for each property are listed along with their range of use afl.d the worst

accuracy encountered over this range. Figures 3-13 show the properties and the accuracy of the
approximation, as calculated by

accuracv = Ya~pro~ - Ysteaml3bl~. 100 (0/0].
• Ys1um tables

[9J

For all of the properties, the range of each function was chosen such that the accuracy is as small
as possible and the first derivatives of two adjoining functions are equal at the point where they

tProgram diskettes. conuin:r.g the programs used in the determination ot the aoproximation functions and 1'1 the
reproduction of propeny table'>, ,,;an be obtained from the fi~t al'thor. These diskettes a.e available in either PDPII
or IBM·PC format.
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Figure 7. Saturation temperature.

Jom. Thus the sets of functions for specific volume and specific enthalpy can be used for the
calculation of the rate form equation of state (Garland & Sollychin 1988) and in computer
algorithms involving the Jacobi of tho system matrix. The conti!luity of tho slopes for specifio
volume (liquid phase), density (gas phase) and specific enthalpy for both phases, is sllown in figures
14-17.

The approximation functions can now be applied to the rate form of the equation of state (see
the appendix). Plots of the F functions of[A.2] are shown in figures 13-22. Ead, of the F functions
yield.s a smooth continuous curve. as desirtd.

Specific volume, liquid phase at saturation

The functions giv~n below are an approximation to the specific volume of light water in the liquid
phase. rdm3fkg). for saturation condition~. The pressure range within whk:h they may be used is
0.075-21.5 MPa with the accuracy not worse than 0.14%. Figure 3 ,hows the accuracy of the
approximation.

Approximation functions:

t"L = \.2746977E - 4. P •• (0.4644339) + 0.001

0.075 MPa ,,; P ,,; 1.00 MPa

t"L = \.0476071 E - 4. p .. (0.5651090) + 0.001022

\.00 MPa < P .;; 3.88 MPa

VL ~ 3.28:6717E - 5.P -'- 1.\2174735E - 3

3.88 MP. < P .;; 8.84 MPa

VL = 3.3551046E - 4.exp(5.8403566E - 2. P) + 0.00085

8.84 MPa < P .;; 14.463 MPa

VL = 3.1014626E - 8. P .. (3.284754) + 0.00143

14.463 MPa < P < 18.052 MPa

VL = 1.5490787E - 11. P .. (5.7205) + 0.001605

18.052 MPa ,,; P < 20.204 MPa

VL = 4.1035988E - 24. P .. (15.03329) + 0.00189

20.204 MPa ,,; P ,,; 21.5 MPa.
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Den~ilY, gas phase at saturut;Dn

The fenowing correlations give an approximation to the density of light water in the' gas phase.
DdkgjmJ

], for saturation conditions. Their ra:lge of use is 0.085-21.5 MPa with thc accur2cy r.ct
worse th3.n 0.22%. Figure 4 show:; the accuracy of the approximation.

Approximarior. functions:

Do = 5.126076. P •• (0.9475862) + 0.C12

0.085 MPa < P < 1.112 MPa

Do = 4.00832. P .. (1.038819) + 0.52

1.112 MPa ,,;; P < 3.932 !vIPa

Do = 2.868721.P .. (1.252148) + 3.80

3.932 MPa ~ P < 8.996 !vI!'a

Do ~ 0.5497553. P •• (1.831182) + 18.111

8.996 MPa ,,;; P < 14.628 MPa

Do ~ 8.5791582E - 3. P .. (3.176484) + 50.0

14.628 MPa";; P ,,;; 18.21 MPa

Do = 3.5587113E - 6. P •• (5.660939) + 88.0

18.21 tAPa < P ,,;; 20.253 MPa

Do = 3.553734E - 16.P *,(13.03774) + 138.0

20.253 MPa < P ,,;; 21.5 MPa.

Specific er.tha/py, liquid phase at saturation

The correlations given below approximate the specific enthalpy of light water in the liquid phase.
hclkJ/kg], for saturation cor,ditions. The range for which they may be used is 0.075-21.70 MPa
with the accuracy not worse than 0.100/0. Figure 5 shows the accuracy of the approximation.

Approximation functions:

hL = 912.1779.P .. (0.2061637) - 150.0

O.C75 MPa < P < 0.942 MPa
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he = 638.06210P .. (0.2963192) + 125.0

0.942 MPa <: P < 4.02 MPa

hL = 373.7665 op .. (0.4235532) + 415.0

4.02 M?a <: P < 9.'.164 MPa

h, = 75.38673.P .. (0.8282384) + 900.0

9.964 MPa '" P < 16.673 MPa

hL = 0.1150827 0P .. (2.711412) + 1440.0

16.673 MPa ,;; P < 20.396 MPa

hL = 9.1417257E - 140 P 0(11.47287) + 1752.0

20.396 MPa ~ P ,;; 21.70 MPa.

Specific enthalpy, gas phase at saturation

The following functions give an approximation of the specific enthalpy of light water in the g.s
phase. hdkJ jkg]. for saturation conditions. Their range is 0.075-21.55 MPa with the accuracy not
worse than 0.066%. Figure 6 sh0ws the accuracy of the approximation.

Appr.:Jximation functions:

hG = - 4.0381938E - 60(3.0 - P) 00 (15.72364) + 2750.0

0.075 MPa < p <: 0.348 MPa

hG = - 0.57673040exp( - 1.6615h(P - 3.2)) + 2~00.0

0.348 MPa < P ,;; 1.248 MPa

hG = -7.8359860(3.001 - P) .. 2.0 + 2.9343120(3.001 - P) + 2803.71

1.248 MPa < l' < 2.955 MPa

hG = - 1.3472440(P - 2.999) .. 2.0 - 2.326913 o(P - 2.999) + 2803.35

2.955 MPa ,;; P ,;; 6.522 MPa

hG = - 0.92191760 (P - 9.0G) .. 2.0 - 16.388350 (P - 9.00) + 2742.03

6.522 MPa < P < 16.497 MPa
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hG = - 3.532177>(P - 8.00) .. 2.0 + 29.81305.(P - 8.00) + 2565.00

16.497 MPa ,;; P < 20.193 MPa

hG = - 22.92521 .(P - 18.0) •• 2.0 + 44.2367\o(P - 18.0) + 2415.01

20.193MP.,;; P';; 21.55 MPa.

Saturation temperature

The correlations given below are for the saturation temperatu,e of light water, T~, [0C]. The
pressure range for which they ma~ be used is 0.070-21.85 MPa with the accuracy not worse than
0.02%. Figure 7 shows the accuracy of the approximation.

Approximation functions:

T~, = 236.2315.P .. (0.1784767) - 57.0

0.070 MPa ,;; P < 0.359 MPa

T~, = 207.9248. P •• (0.2092705) - 28.0

0.359 MPa ,;; P ~ 1.06 Mra

T~, = 185.0779. P .. (0.2323217) - 5.0

1.676 MPa < P ,;; 8.511 MPa

Ty , = 195.1819.P ..(0.2241729) -16.0

8.511 MPa < P < 17.69 Mra

TR' = 227.2963. P .. (0.201581) -- 50.0

17.69 Mra ,;: P ,;; 21.85 MPa

Specific entropy, liquid phase at saturation

The functions given below ur~ an approximation of the specific entropy of light water in tile
liquid phase. 'dkJ/icg], for saturation conditions. Their range of use is 0.065-21.25 MPa wnt. the
accuracy 110~ worse than 0.12%. Figure 8 shows the accuracy of the approximation.

Approximation !llncrions:

Sl = 3.340244.P .. (0.125474) -1.20

0.065 MPa ,;; P < 1.666 MPa

Sl= \.748203.P .. (0.2275611) +0.40

\ .666 MPa ,;; P < 8.825 MPa

S, = 0.2549248. P •• (0.6381866) + 2.25

8.325 MPa ,;; ? < 16.66 MPa

Sl = 4.3632383E - 5. (F - 0.40) •• (3.153273) + 3.50

16.66 MPa ,;; P < 21.25 MPa.

Specific emrop)', gas phase at saturation

The following functions give an approximation to the specific t:ntropy of light water in the gas
phase. sGlkJ/kg], for saturation conditions. Their range is 0.025-21.50 MPa with the accuracy not
worse than 0.10%. Figure 9 shows the a;:curacy of the approximation.

Approximation [unctions:

SG = 6.58681 - 0.335924 .log(P)

0.025 MPa ,;; P ,;; 1.48 MPa
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So = 7.80 -1.227644.P ..(0.2481072)

1.48 MPa < P " 8.05 MPa

So = 6.30 - 0.084638514. P •• (0.9082161)

8.05 MPa < P " 15.64 MPa

So = 5.50 - 3.6897\61£ - 3*(P - 7.80) .. (2.012466)

15.64 MPa < P " 20.00 MPa

So = 5.00 - 0.042830642.(P - 18.7) .. (1.779526)

20.00 MPa < P " 2\.5 MPa.
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Specific heat, liquid phase at saturation

The correlations given helow are an apprvxi!TIation to the specific heat of light water in the liquid
phase, CPLlkJ/kg K], for saturation conditions. Their range of use is 0.030-20.3 MPa. For pressures
< 13.3 MPa, the aocuracy is not wars< than OJ/8%; for pressures> 13.3 MPa, the error can be as
high as 0.60%. Figlire 10 shows the accuracy of the approximation.

Approximation functions:

CpL = 0.247763. P .. (05704026) + 4.150

0.030 MPa " P < 0.671 MPa

CpL = 0.179305 • r •• (0.8967323) + 4.223

0.671 MP" " P < 2.606 MPa

CpL = 0.09359843.P .. (1.239114) + 4.340

2.606 MPa " P < 6.489 MPa

CpL = 0.01068888. P •• (2.11376) + 4.740

6.489 MPa " P < 11.009 MPa

CpL = 1.333058E - 4. P .. (3.707294) + 5.480

11.009 MPa ,,; P < 14.946 MPa

CpL = 6.635658E - 3 .(P - 10.0) .. (3.223323) + 7.350

14.946 MPa"; P < 18.079 MPa

CpL = 4.6844786E - 6.exp(0.7396875. P) + 10.020

18.079 MPa ,:; P " 20.10 MPa.

Specific heat. gas phase at saturation

The follOWIng correlations give an approximation to the specific heat of light water in the gas
phase, CpdkJ/kg K], for saturation conditions. Their range of use is 0.050-20.40 MPa. For
pressures < 16.0 MPa, the accuracy is not worse than 0.12%; for pressures> \6.0 MPa. the error
can be as high as 0.60%. Figure 11 shows the accuracy of the approximation.

Approximation. functions:

CpO = 0.6471635.(P - 0.006) .. (0.6400569) + 1.90

0.050 MPa " P " 0.599 MPa

CpO = 0.5560633. P •• (0.8197355) -+- 2.00

0.599 MPa " P < 2.39\ MPa
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C", = 0.3187082. P ..(1.110271»+2.30

2.391 MP& ,;; P < 5.661 MlP'.I.

C", = 0.064275995. p .. (1.766111Jf:) + 3.12

5.661 MPa ,;; P < 9.458 MiP'.a

C", = 3.1I011048E - 3. P .. (2.SDB97) + 4.40

9.4Sll MPa ,;; P ,;; 12.9001W1Pa

C", = 0.11176175 oexp(0.246692$..H') + 5.00

12.9UO MPa < P ,;; 16.3O'JlNPa

C", = 7.620756E .- 3 .exp(0.411712l19. P) + 9.20

16.309 MPa < P < 18.74]lNPa

C", = 6.5162612E - 6.exp(0.7Wil.P) + 17.10

1&.743 MPa ,;; P < 20.40lNPa.

Dynamic riscosicJ'. liquid phase tU saturation

The f('llJowing functions give an approximation to the dynamic viscosity of light water in the
liquid phase, Vi,cl [10- 6 kgjm sl, r.,.. saturation conditions. Their range of u,e is 0.035··21.45 MPa
with the accuracy !lot worse\th3.3. 0.10%

• Figure 12 shows the accuracy of the approximation.

ApprJxlmo.tion functions: - = ~,.., -S\ r-~
V;SCl = 111.5993. P •• ( -0.34:5438) ... 38.0

0.035 MPa ,;; P < 0.960 MPa

Viscl = 134.5288. p .. ( -0.284$300) + 15.0

0.960 MPa ,;; P ,;; 3.94$ MPa

Viscl = 141.5415 - 25.9 135h1m>lP)

3.948 MPa < P < 9.514MPa

Viscl = 113.4599. exp( - 0.032719562. P)

9.514 MPa ,;; P < 15.074 MPa

V:scl = il0.0 - 17.67922. eXp(iI.05556056. P)

15.074 MPa ~ P < 18.i168 MPa

Viscl =9.12152.P -O.31598]·)'.P .. ?0

18.868 MPa ~ P < 20.430 MPa

Viscl = 64.0 - 0.00261596 .exp<OAOI0038 • p)

20.430 MPa ~ P ,;; 21.45 MPa.

Dynamic l'i:;cosily, gas phase at SDluracion

The foRowing functions give an approximation of the dynamic viscosity of light water in the gas
phase. ViscdlO- G kgjm sj, for saturation conditions. Their range of use is 0.040--21.35 MPa with
the accu.""3cy !lot worse than 0_0650/0. Figure 13 shows the accuracy of the approximation.

ApproJimation functions:

V;soG = 7.473620. P •• (0.2050149) + 7.6

0.040 MPa ,;; P <: 2.207 MPa
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,
Table 2. Summary of approximation functions

Property No. of functions Range of use (MPa] Worst accuracy [%]

v, 7 0.075-21.50 0.14
Dc 7 0.085-21 .50 0.22
h, 6 0.0;5-21.70 0.10
he 7 0.075-21.55 0.066
U, 0.075-21.50 0.08
Ue 0.085-21.50 0.11
T 5 0.070-21.85 0.02'.,
s, 4 0.065-21.25 0.12
Se 5 0.025-21.50 0.10

5 0.030-13.30 0.08
C" 3 13.30-20.30 0.60

6 0.050-16.GO 0.12
C,., 3 16.00-20.40 0.60
ViscL 7 0.035-21.45 C.W
ViSC(, 6 0.040-21.35 0.065

Vise,; = 3.3751630P .. (0.3916208) + 11.8

2.207 MPa < P ~ 5.480 MPa

ViscG = 0.91694100 P .. (0.7644731) + :5.0

5.480 MPa < P < 9.585 MPa

Viscc = 5.030544oexp(0.5t)452390P) + 12.0

9.585 MPa ~ P < 14.351 MPa

ViscG = 0.44237610exp(0.1458726 0P) + 18.8

14.351 Mra ~ P < 81.385 MPa

Vi;cG = O.01082229*exp(O.30719i80P) + 22.2

13.385 MPa ~ P ~ 20.347 MPa

ViscG = 6.6753655E - 6 oexp«(l.6347700 0P) + 25.1

20.347 MPa < P ~ 21.25 MPa.

SUMMARY

The functions presented in this paper ~llow rapid calculation of the thermodynamic properties
of light wate!" for saturation conditions. Their range of use is from below Ib to just below the critical
point with a high enough accuracy for the purpose ('If thennalhydraulic systems analysis. Tl.le
ran~e:; and accuracies for each property are sUffi!l1arized in table 2. It should be noted that internal
energy, U, can be calculated using the correlations for specific volume and specific er,thalpy and
the equation U = H - PV. This yields an error of <0.11%.
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Table 2. Summary of approximation functions

Property No. of functions Range of use [MPa] Worst accuracy (%]

v, 7 0.075-21.50 0.14
Dc 7 0.085-21.50 0.22
h, 6 0.075-21.70 0.10
hG 7 0.075-21.55 0.066
U, 0.075-21.50 0.08
UG 0.085-21.50 0.11
~ 5 0.070-21.85 0.0:'.,
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5 0.030-13.30 0.08
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6 0.050-16.00 0.12
CoG 3 IG.C0-20.40 0.60
ViscL 7 0.035-21.45 010
ViSCo 6 0.040-21.35 0.065

Visco = 3.J75163 0 P .. (0.3916203) -!- 11.8
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Visco = 0.91694100 P .. (0.7644731) + 15.0
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Visco = 5.030544oexp(0.5045239 o?) + 12.0

9.585 MP. ~ P < 14.35\ MP.

VisCo = 0.4423761 oexp(O.1458726 0P) + 18.8

14.351 Mr. ;;; p < 81.385 MP.

Visco = 0.01082229 oexp(0.3071918 0P) + 22.2

18.385 Mr. ~ P ~ 20.347 MPa

Visco = 6.6753655E - Goexp(G.6347700 0P) + 25.\

20.347 Mr. < P ~ 21.35 MP•.

SUMMARY
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The functions presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below Ib to just below the critical
poir.t with. high enough .ccuracy for the purpose of therm.lhydr.ulic systems .n.lysis. The
ranges and accura~ies for each prorerty are summarized in table 2. It s~ould be noted that intern£'l.l
energy, U, c.n be c.lculated using the correlations for specific volume and specific enthalpy and
the equation U = H - PV. This yields an error of <0.11%.
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APPENDIX

[A. 1]
dP
di=

The Rate Form of the Equation of State

The develcp<ntnt ,of a non-iterative equation of state for two-phase flow systems was r~ntly
investigated (Sollychin et 01. 1985; Garland & Sollychin 1988). At present, the equatIon of state
is usually solved by iterative numerical techniques. By recasting the equation of state the time
rieriv<.'Ilive of P can be solved diro:::tly and the use of iterative methods can be elimi:l.ated. The
time derivative f0nTI of the equation of state was developed by considering an arbitrary volume
of two-phase fluid as 1. the!'ffiodynamic system where both phases are at saturation under a
uniform saturation pressure, P. By utilizing the total mass of the fluid, M, the total enthalpy
in the 5ystem, H, the volume of the system, V, and taking the derivatives of tnese Guantities with
respect to time, oue obtains [A. I] which is dependent on the initial pressllre alOd on the rate of
change of mass, volume and enthalpy in the sj'stem:

dM dfl dV
F,(P)-d + F,(P)-d + Fi(P)-d

t - t t

M,F,(P) + MrF,(P)

where

F,(P) = l'G - VL,

F,(P) = - (hG - hLl,

dhG dVG
F,(P) = dP (DG - l'L) - dP (hG - IlL)

and

dnL dVL
F,(P) = dF (VG - I'L) - dP (hG - hL)'

This [onn involves combinations of the saturation values of specific volume and specific enthalpy
in iiquid and gas phases. and the derivatives of these properties with respect to pressure. Thus we
can incorporate the approximation functions described above to easily solve the equation of state
[1]. The derivatives are determined simply by taking the derivative:; (lfthe approximation functions
with respect to pressure.


	Appendix 1 - Time Derivatives
	Appendix 2 - The Reynolds Transport Theorem
	Appendix 3 - Rearrangement of Independent Vartiables
	Appendix 4 - Fast Calculation of Light-Water Properties

