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Before taking up the main business of the chapter, we pause briefly to
make a few comments regarding three kinds of time derivatives used in the
text. We might illustrate them with a homely exainple—namely the problem
of reporting the concentration of fish in the Kickapoo River. Because the
fish are moving, the fish concentration ¢ wiil be & function of position
(z, ¥, z) and time ().

The Partial Time Derivative, dcfdt

Suppose ‘ve stand on a bridge and note how the conceatration of fish
just below us changes with time. We are observing then how the concentra-
tion changes with time at a fixed position in space. Hence by 9¢/dt we mean
the “partiai of ¢ with respect to ¢, holding =, y, z constant.”

Total Time Derivative, dz/dt

Suppose now that instead of standing on the bridge we get in a motcrboat
and speed around on the river, sometimes going upstream, sometimes across
the current, and perhaps sometimes downstream. If we report the change
of fish concentration with respect to time, the numbers we report must also
reflect the motion of the boat. The total time derivative is given by

de ©dc  dcdzx ir:gg de dz

= -—— 3.0-1
dt dt dxdt Oy dr+az dt ( )

in which dz/dt, dyfdt, and dz[d! are the components of the velocity of the
boat.

Substantial Time Derivative. Dc/Dt

Suppose that we get into a canoe, and, not feeling energetic, we simply
float along counting fish. Now the velocity of the observer is just the stame
as the velocity of the stream v. When we report the change of fish concentra-
tion with respect to time, the numbers depend on the local stream velocity.
This derivative is a special kind of total time derivative and is called the
“substantial derivative” or sometimes (more logically) the “derivative
following the motion.” It is reluted to the partial time derivative as follows:

De  3c de de de
Dt o t v dz + o dy +o dz (30-2)
in which o, v,, and v, are the components of the local fiuid velocity w.

The reader should thoroughly master the physical meaning of these three

derivatives. Pemember that dcfot is the derivative at a fixed point in space

. and Dc/Dt is a derivative computed by an observer floating downstream
with the fluid.
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Selected differentials from a condensed
collection of thermodynamic formulas
hy P. W, Bridgman

Any partial derivative of a state variable of a thermodynamic system, with respect
to uny other state variable, a third variable being held constant [for example,
(&14/80) 7] can be written, from Eq. (4~20), in the form

{Bu)B2)
(3Uf32)r

where 2 is any arbitrary state function. Then if one tabulates the partial derivatives
of all state variables with respect to an arbitrary function z, any partial derivative
can be obtained by dividing one tabulated quantity by another, For brevity,
denvatives of the form (@n/dz)p are written in the table below in the symbolic
form {du)p. Then, for example,

(Quldv)y =

(gt_;) _ @ur _ T@RT) + P@P) _TH
T L]

v/t (Bv)p —(Bv/3P)p K

which agrees with Eq. {6-9}. Ratios (not derivatives) such as d'qpfdv;. can be
treated in the same way. For a further discussion, see 4 Condensed Collection of
Thermodynamics Formulas by P. W. Bridgman (Harvard University Press, 1925},
from which the table below is tuken,

£ constant T constant

{(dT)p = 1 {(dP)g = —1

{0r) = (Gvf0T), {Ov)y = —(3v/8P);.
(0)p = ¢/ T {35}y = {Dv/BT),.
(Pq)p = ¢, (89)p = T(Dv}8T),

(Ow)p = P(3v/3T),. (Bw)p = —p(dv/dP)r .

(Bu)p = ¢, — P(20j3T), (Bu)yp = T(v/dT), + P(vfoP)
(Ohyp = ¢y (M) = —-v + T(Oc/8T),

(Bg)p = -5 (ag}T = a-p

(3f)p = —s —P(0v/3T),. (8f)r = P(Ov/dP),

h constant

(2P}, = —cp

(3T), = v — T{Ff3T),
(@v), = —cp(OvfOP)y — T{fAT)p

+ v(aD[aT)P

(@h = vepfT
(dq)n = vep
(Bw), = —Plcp(dufdP)y 4 T(I03T)H

— v(3(aT)p]
s constant
(aP)l = -CPIIT
(3T), = —(3vf3T)p

@), = - %[CI{BU/BP)T + T(@uf3T))
(99), =0

@, = = Lieptooiae): + 1002
(@), = £ fer(@uf2P)r + (T BufdTH]

(8k), = —vepiT
(2), = = = loep = ST@JT),)

@), = ‘;:[Pcp(avfaP)T + PT(30/aT)

+ sT{30JaT) )

2 constant
(3P), =5
@r), =v
(3v), = v(3v/dT)p + s(Fv/OP),

@), = % [vep — sT(@f3T)p)

(3q), = —sT(3fdT)p + vep
(ew), P[u(aujaT),. + stdvf/dPy,|

"

v constant
(8P), = —(9va7),
(8T, = (OvfdP)r

(25), = % [c {30/3P) g + T(3e3TIE]

(3g), = ¢ (Quf3P)r + T(2vfoTs.

{(Bw), =0 .
(Bu), = ¢ {QufdP)y + T(d[dT);.

(@h), = ¢, (3/3P)y + T(DcJATY.
-— l‘(ariaﬂ,-

(3g), = —w(dvjoT), — stdv/dP)y
(3), = —~s(Bv/dP)r

I
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APPROXIMATE FUNCTIONS FOR THE FAST
CALCULATION OF LIGHT-WATER
PROPERTIES AT SATURATION
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Abstract--For thermalhydraulic systerns analysis, liuear interpolation algorithins are commonly used for
the calcuiaticn of thetmodynamic properties. However, these algorithms can use a substantial amoun: of
computer time and memory. An alternative to this approach suggested in the past is the use of
approximation formulas. Such formulas for the calculaiion of the thermodynamic proparties of light water
for saturation conditions arc presented here, based on the 1984 NBES/NRC Steam Tables. The range of
these approximations is from below 1b to just below the crtical point (22.055 MPa) with 2 deviation from
tabulated values of not mere than 0.22%. The formulas were determined by tie raethod of least squares,
enzbiing a minimization of deviations from the line of best fit and the fitting of functions simple enough
10 be used with programmable calculators. as well as microcoinputers. In addition to the rapid calculation
of the properties, the simple ctrve fits are instrumenta] in the development of the rate form of the equation
of state.

Since any given property cannot be accurately fited over the ertile pressure range with a single simple
expression, the presswie range was spiit into subranges. Special care was taken to ensurc that the slopes
of the ¢curve fits were continuous across the boundaries siner discontinuities in the slopes of the property
tables can cause instabilities and failure of search algorithms in typical computer codes.

Key Words: water propertizs, curve fit, fast, saturaiion.

INTRODUCTICN

In the analysis of flow systems, the thermodynamic properties are usually calculated by linear
interpolation algorithms applied to thermodynamic tables stored on computer. However, the
storage of these steam tables can occupy a large amount of computer memory. As well, the linear
interpolation algorithms require a searching algorithm to select the proper numbers from the tables.
Thus the use of such algonthms can considerably tax computer running time. An alternative to
this method is the employment of approximate formulas. similar to those described by Firla (1984),
which can rapidly compuie the value of a property with satisfactory accuracy for the purpose of
system analysis.

This paper concentrates on the thermodynamic properties of light water for saturation
conditions. At saturation, the temperature can be expressed as a function of pressure oaly.
Therefore, we can represent the properties by a number of simple functions containing one
independent variable: pressure.

In addition io the direct caiculation of thermodynamic properties, these zpproximation functions
can be applied to the determination of the rate form of the equation of state (Garland & Sollychin
1988).

APPROXIMATION METHOD

The approach taken in developing the correlations minimized the deviations from the reference
steam tables. To maintain a high accuracy it was necessary to subdivide the range of pressure
variation into several regions. The simple functions used were fitted to the data by the method of
least squares, as discussed in the following section.

As system codes often require the slopes of the properties, the fits to the steam table by a set
of approximation functions, were required to exhibit a continuous first derivative across the entire
range of pressure.

333



334 WM. J. CARLAND and J. D. HOSKINS

Least-squares method
We represent a set of ~ data points by some relationship y = f(x), containing p unknown

parameters a,, 4y, . . ., 4,, the deviations or residuals are given by
Di=fix)—y. i
The sum of the squares of the deviations,
§= Z D=} [f(x) =yl ¥
(A i=1

is a function of &, a;,...,4,. The parameters are determined such that § is 2 minimum
(dS/de, =0, dS/da, =0, ...,dS/da, =0).

If we take y = f(x) to be a linear function (y = a, + a,x), the residuals are D, = (a, + a,x,) — y,,
so that

S=(a +ax,—yy+(@+ax;, -y, +...+ (@ +ax,—p) 3]
On differentiating S with respect to g, and a,, two equations are obtained:
ds .
32 gy + ayx, —y)+ Aay+ay X, —yp + ...+ Aa + ayx, — y,) =0
1

and

ds
. =20 )a, + ayx, — y) + 2Axay+ayx; —y) + .+ 2Ax)a +ayx, —v,)=0 [4]
2

Dividing by two and collecting the coefficients of 2, and a,, we get

ra, +(z xl):q: v

i im|

and

(é", x,)a, + (i x,?\)al = ‘2 Xy, (5]

fom | =1

Similarly, for a second-order polynomial {(quadratic equation):

(Yo () £ o

im i =1

(i .t,)a, +(i xf)a2 +(i x?\a3 = i X, ¥, (6b]

Q- Fm=

)
(£ (e (g o

and

P | =t

These equations can be solved for a,, a; and a4, 10 give the function y = a; + a,x + ayx°. Higher
order polynomials may also be fitted in this manner, of course.

Correlations are often described by a correlation coastant, r. This number expresses the strength
and direction of the correlation and can vary from + 1.60 to — 1.00. For positive correlations where
an increase in one variable tends to lead to an increase in the other vaniable being considered, r
is positive. For negative correfations where an increase in one variable tends to lead 16 a decrease
in the other, r is negative. The largest magnitude of r is 1.00 which represents a perfect correlation.
Thus the closer the points in a plot of the two variables come to falling on the line of best fit, the
nearer r will be to +1.00 or —1.00. The following section describes different types of functions
that can be determined using the method of least squares. The correlation constant can be used
as a way io compare ¢ach function and to see if the range being fitted is too large to obtain a high
enough accuracy with the steam tables.
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Table 1. Transforming functions into a lincar form

Function Operations on data Linear form
1 1

y=‘—z+b X - y-—-a(-—)+b

X f x

x=log x

y=axt y=log y (Qogy)=bQogx) +loga
y = aexp(bx) y=logy (logy)=>bx +loga
y=alogx+é x=log x y=allogx)}+b

The correlation constant for y = ax + b 1s calculated as

. (3

b il}’r'*'az(xdﬁ)'——”?“—

Ry (1
i (y.-)z—('—%':‘—)—

i1

Similarly, for ¥ =ax?+bx +c,

n n n (2": y')
cLyith E| (xy)+a y (xly) — oo
n (z yi)

T () ==t

imi

r=

(8]

Using least squares for other functiors

Data can be approximated by other functions which include power, exponential and lozarithmic
forms. The coefficients of each of these functions can be determined using [5] by altering the data,
as shown in table 1, to transform the functions into a linear form. The power funcuion and the
exponential function are expscted to be useful in producing an accurate curve fit of the
thermodynamic properties. However, the method of least squares determines these functions such
that x = 0 for y =0. To obtain better accuracy with these curves, we can shift the data by adding
to or subtracting from the x and v values. For example, figure i{a) shows two curves passing

(a) (b)

Figure |. Example of data shifting. (a) The solid line represents the best-fit curve as determined by sight.

The dashed line represents the best-fit power curve as determined by the method of least squares. (b) The

y values in () have a constant value, Yy, subtracted from them such that the solid line passes through

the origin.. The dashed line is now more comparable to the solid line and is given by y — ¥, = ax® where
a and b are found using {5].

M.F. 143—F



336 WM. J. GARLAND and ). D. HOSKINS

(a) (b) (e)

Figure 2. Dealing with negative sloping curves. (2) The actua! data points are plotted. The slope of a curve
passing through these points is negative. From figure 1, ene can see that the shift that would produce
the most accurate fit makes all (y — 1)) values negative in this case. (b) The negative y values are plotted
here. The stope of a curve passing through these points is positive (2) The negative 1 vaiues are shifted
upward by a consiant, ¥,, such thai all ¥ = —y + ¥, arc positive. The method of least squares can now
be used for the power and exponential functions. For the power function, the equation det=rmined by

least squares is given by y = ¥, — ax®. .

through a set of points. Curve 1 is the best fit, as determined by sight, and curve 2 is the best fit
of a power function, as determined by the method of least squares, without shifting the data. Figure
1(b) shows the two curves after a constant, ¥y, has been subtracted from each y value. We can
see the effectiveness of a shifting of data. By comparing the correlation constants for different shitts,
one can determaine which shift gives the most accurate curve fit. The shifting of the data should
be done before the operations descrived in table ! are carried out.

In some circumstarces, such as when there is a dacrease in y for an increase in x, the necessary
shifting of data would produce negative values either in the x or y direction. To avoid taking the
log of a negative number we can fit the negative of thz y values. Figure 2 demonstrates this
procedure.

CORRELATICNS OF LIGHT-WATER THERMODYNAMIC
PROPERTIEST

The following thermodynamic properties of light water at saturaton were fitted 1o approxi-
mation functions: (1) specific volume;density, (2) specific enthalpy. (3) saturation temperature, {4)
specific entropy, (5) specific heat and {6) dynamic viscosity. The reference source of data ror all
ol these properties, with the exception of viscosity, is the NBS/NRC Steam Tables (Haar o1 al.
1984). The subroutines by Sokolnikoff & Recdheffer (1966} were used for the calculation of the
abeve properties.

These subroutines were also used in conjunction with the equation for viscosity given by White
(1975/1983). This combination was shown to vield an adequate representation of viscosity by
Kamgar-Parsi & Sengers (1982).

The set of functions for each property are listed along with their range of use and the worst
accuracy cncountered over this range. Figures 3-13 show the properiies and the accuracy of the
approximation, as calculated by

approx ¢

Y steam Lables - 100 [0/0]. [9]

sicam tables

accuracy =

For all of the properties, the range of each function was chosen such that the accoracy is as small
as possible and the first derivatives of two adjoining functions are equal at the point where they

tProgram disketies, containing the programs used in the determination ot the approximation functions and in the
reproduction of property tables. can be obtained from the first avthor. These diskettes are available in either PDP11
or IBM-PC format.
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Figure 7. Saturaticn temperature.

join. Thus the sets of functions for specific volume and specific enthalpy can be used for the
calculation of the rate form equation of state (Garland & Sollychin 1988) and in comgputer
algorithms involving the Jacobi of the system matrix. The continuity of the slopes for specific

volume (liquid phase), density (gas phase) and specific enthalpy for both phases, is showa in figures
14-17.

The approximation functions can now be applied to the rate form of the equztion of state (see

the appendix). Plots of the F functions of [A.2] are snown in figures 18-22. Each of the F functions
vields a smooth continuous curve, as desired.

Specific volume, liquid phase at saturation

The functions given below are an approximation to the specific volume of light water in the liquid
phase, v {m’/kg], for saturation conditions. The pressure range within which they may be used is
0.075-21.5 MPa wiih the accuracy not worse than (.14%. Figure 3 shows the accuracy of the
approximation.

Approximation functions:

v = 1.2746977E — 4% P »»{0.4644339) + 0.001
0.075MPa < P < 1.00 MPa

rp = 1.0476071E — 4 « P «x(0.5651090) + 0.001022
1.00 MPa < P < 3.88 MPa

o= 3.2826717E — 5« P + L12174735E -3
388 MPa < P < §.84 MPa

pp = 3.3551046E —- 4 «exp(5.83403566E — 2+ P} 4- 0.00085
8.84 MPa < P < 14463 MPa

v = 3.1014626E — 8 « P ««(3.284754} 4+ 0.00143
14.463 MPa < P < 18.052 MPa

vy = 1.5490787E — |1« P =x(5.7205) + 0.001605
18.052 MPa < P <« 20.204 MPa

v, = 4.1035988E — 24« P +«(15.03329) + 0.00189
20.204 MPa < P < 21.5 MPa.
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Denczity, gas phase at saturution

The feliowing correlations give an approximation to the density of light water in the gas phase,
Dglkeg/m’], for saturation conditions. Their range of use is 0.025-21.5 MPa with the accuracy rct
worse than 0.22%. Figure 4 shows the accuracy of the approximation.

Approximarior. functions:

Dg = 5.126076 # P ++{0.9475862) + 0.G12
0.085 MPa < P < 1.112 MPa

Dg = 4.630832 + P +#(1.038819) + 0.52
1.112 MPa < P < 3.932 MPa

D = 2.868721 « P «%(1.252148) + 3.80
3932 MPa < P <8.996 MPa

Dg=0.54975653» P «»(1.831182) + 18.111
8.996 MPa < P < 14.628 MPa

Do =8.5791582E — 3+ P +=(3.176484) + 50.0
14628 MPa < P < 18.21 MPa

Dg=3.5587113E — 6+ P = (5.660939) + §8.0
18.21 MPa < P < 20.253 MPa

D =3.558734E — 16+ P +=(13.03774) + 138.0
20.253 MPa < P < 21.5MPa.

Specific enthalpy, liquid phase at saturation

The correlations given below approximate the specific enthalpy of light water in the liquid phase.
h [kJ/kgl, for saturation conditions. The range for which they may be used is 0.075-21.70 MPa
with the accuracy not worse than 0.10%. Figure 5 shows the accuracy of the approximation.

Approximation functions:
Ay =912.1779« P ««(0.2061637) — 150.0
0.675 MPa < P < (0.942 MPa
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h, = 638.0621 » P xx(G.2963192) + 125.0
0.942 MPa < P <4.02MPa

hy = 373.7665« P +«(0.4235532) + 415.0
402MPa < P <9964 MPa

By = 75.38673 + P ««{0.8282384) + 900.0
9964 MPa < P < 16.673 MPa

hy = 0.1150827 + P «(2.711412) + 1440.0
16.673 MPa < P < 20.396 MPa

h = 9.1417257E — 14# P «(11.47287) + 1752.0
20.396 MPa < P < 21.70 MPa,

Specific enthalpy, gas phase at saturation

The following functions give an approximation of the specific enthalpy of light water in the gas
phase, Ag{kJ/kg], for saturation conditions. Their range is (.075-21.55 MPa with the accuracy not
worse than 0.066%. Figure 6 shows the accuracy of the approximation.

Approximation functions:

hg = —4.0381938E — 6+(2.0 — P)«2(15.72364) + 2750.0
0.075 MPa < p < 0.348 MPa

ho= —0.5767304sexp( — 1.66153 «(P — 3.2)) + 2800.0
0.348 MPa < P < 1.248 MPa

hg= — 7.835986%(3.001 — P)*+2.0+2.934312«(3.001 — P) + 2803.71
1.248 MPa < P < 2.955 MPa

ho= — 1347244« (P —2.999)xx 2.0 — 2.326913 « (P — 2.999) + 2803.35
2.955MPa < P < 6.522 MPa

he = — 09219176 % (P — 9.00) == 2.0 — 16.38835« (P —9.00) + 2742.03
6.522 MPa < P < 16.497 MPa
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hg= —3.532177+(P — 8.00)+= 2.0 + 29.81305 (P — 8.00) + 2565.00
16.497 MPa < P < 20.193 MPa

— 2292521 «(P — 18.0)»+ 2.0 + 44.23671 «(P — 18.0) + 2415.01
20.193 MPa € P £ 21.55 MPa.

1

hg

Suturation temperature

The correlations given below are for the saturation temperature of light water, T,,, [°C]. The

pressure range for which they mav be used is 0.070-21.85 MPa with the accuracy not worse than
0.02%. Figure 7 shows the accuracy of the approximation.

Approximation functions:

T, =236.2313« P »«(0.1784767) — 57.0
0.070 MPa < P <0.359 MPa

T..= 2079248« P+=(0.2092705) — 28.0
0.359 MPa < P < 1.€76 MPa

T, = 1850779+ P ++(0.2323217) — 5.0
1.676 MPa < P < 8.511 MPa

Ty = 1951819 % P x+(0.2241729) — 16.0
8.511 MPa < P < 17.6% MPa

T, =227.2963« P ««(0.201581) -- 50.0
17.69 MPa < P < 21.85MPa

Specific entropy, liquid phase at saturation

The functions given velow are an approximation of the specific entropy of light water in tne
liquid phase. 5, [(kJ/kg), for saturation conditions. Their range ot use is 0.065-21.25 MPa with the
accuracy not worse than 0.12%. Figure 8 shows the accuracy of the approximation.

Approximation funciions:
s, = 3.340244 « P «x{0.125474) — 1.20
0.065 MPa < P < 1.666 MPa
s = 1.748203« P «x(0.2275611) + 0.40
1.666 MPa < P < 8.825 MPa
sp = 0.2549248 « P« (0.6381866) + 2.25
8.8325 MPa € P < 16.¢6 MPa
s = 4.3632383E — S«(F —0.40)+(3.153273) + 3.50
16.66 MPa £ P < 21.25 MPa.

Specific entropy, gas phase at saturation

The following functions give an approximation to the specific entropy of light water in the gas
phase. sg{kJ/kg}, for saturation conditions. Their range is 0.025-21.5¢C MPa with the accuracy not
worse than 0.10%. Figure 9 shows the accuracy of the approximation,

Approximation functions.
sg = 6.58681 — 0.335924 « log(P)
0.025MPa € P < 1.48 MPa
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5= T1.80 — 1.227644 + P +=(0.2481072)
1.48 MPa < P < 8.05MPa

56 =6.30 — 0.084638514 » P »+ (0.9082161)
8.05MPa < P £ 15.64 MPa

Sg = 5.50 — 3.6897161E — 3=(P — 7.80) «+{2.012466)
15.64 MPa < P < 20.00 MPa

56 = 5.00 — 0042830642 « (P — 18.7) ««(1.779526)
20.00 MPa < P < 21.5MPa.

Specific heat, liguid phase at saturation

The correlations given below are an approximation to the specific Leat of light water in the liquid
phase, Cp [kJ/kg K], for saturation conditions. Their range of use is 0.030-20.2 MPa. For pressurcs
< 13.3 MPa, the accuracy is not worse than 0.08%; for pressures > 13.3 MPa, the error can be as
high as 0.60%. Figure 10 shows the accuracy of the approximation.

Approximation functions:
Cp = 0.247762 » P +x(0.5704026) + 4.150
0.030 MPa < P <0671 MPa
L =0.179305« I »»(0.8967323) + 4.223
G.671 MPa < P <2.606 MPa
L =0.09359843+ P ++(1.239114) + 4.340
2.606 MPa < P < 6.489 MPa
Co = 0.01068888+ P ++(2.11376) + 4.740
6.483 MPa < P < 11.009 MPa
Co. = 1.333058E — 4+ P +»(3.707294) + 5.480
11.009 MPa € P < 14.946 MPa
Cor = 6.635658E — 3#(P — 10.0) »«(3.223323) + 7.350
14.946 MPa <€ P < 18.079 MPa
Co = 4.6844786F — 6 wexp{0.7396875+ P) + 10.020
18.079 MPa < P < 20.30 MPa.

C

P

C

P

Specific heat, gas phase at saturation

The following correlations give an approximation to the specific heat of light water in the zas
phase, ClkJ/kg K], for saturation conditions. Their range of use is 0.050-20.40 MPa. For
pressures < 16.0 MPa, the accuracy is not worse than 0.12%.; for pressures > 16.0 MPa. the error
can be as high as 0.60%. Figure 11 shows the accuracy of the approximation.

Approximation functions:

Coc = 0.6471635# (P — 0.006) += (0.6400569) -+ 1.90
0.050 MPa < P < 0.599 MPa

Cpc = 0.5560633« P #+(0.8197355} + 2.00
0.599 MPa < P < 2.391 MPa
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Cyo = 0.3187082« P ++(1.11027F) 4230
2391 MPa < P < 5.661 MiPa

Cyo = 0.064275995 % P »(1.766108) + 3.12
5.661 MPa < P < 9.458 MiP2

Cy = 3.8011048E — 3+ P+ (2.B16897) + 4.40
9.458 MPa < P < 12.900 MPa

Coo = 01876175 exp(0.2466925% ) + 5.00
12500 MPa < P < 16309 MPa

Coi = 7.620756E - 3% exp(0.41 17289 + P) + 9.20
16309 MPa < P < 18.743MPa

Coo = 6.5162612E — 6+exp(0.75623 1 » P) + 17.10
18.743 MPa < P < 20.40 MPa.

Dynamic rviscosity, liquid phase ag saturation
The following functions give am approximation to the dynamic viscosity of light water in the
liquid phase, Visc, [Mﬂ, fior saturation conditions. Their range of use is 0.035--21.45 MPa
with the accuracy not worsc\th_zm 0.10%. Figure 12 shows the accuracy of the approximation.
Approximation functions: T = MP -3
Visc, = 111.5993 » P = ( —0.342%438) -+ 38.0
0035MPa £ P < 0.960MPa
Visc, = 134.5288 « P == (-~ 0.284%300) + 15.0
05960 MPa < P < 3.948 MPa
Vise, = 141.5415 — 2591353 «kmiP)
3943 MPa < P < 9.514 MPa
Visc, = 113.4599 «exp( — 0.03279562 + P)
9514 MPa € P < 15.074 MPa
Visc, =110.0 — 17.67922 nexp{@.05556056 = P)
15.074 MPa < P < 18.868 MPa
Vise, =9.12152s £ —G.315983T= P =+ 2.0
i8.868 MPa < P < 20430 MPa
Visc, = 64.0 — 0.00261596 + exp(0.4010038 « P

20430 MPa < P < 2145 MPa.

Dynamic viscosity, gas phase ar saturation

The following functions give an approximation of the dvnamic viscosity of light water in the gas
phase. Visc[i0~¢ kg/m s], for samuration conditions. Their range of use is 0.040-21.35 MPa with
the accusacy not worss than 0.065%. Figure 13 shows the accuracy of the approximation.

Approximation functions:
Viscg = 7.473620 « P »»(0.2050149) + 7.6
0.040 MPa < P < 2207 MPa
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Table 2. Summary of approximation functions

Property No. of functions  Range of use [MPa] Worst accuracy [%]
e 7 0.075-21.50 0.14
Dg 7 0.085-21.50 0.22
he 6 0.075-21.70 0.10
hg 7 0.075-21.55 0.066
U, — 0.075-21.50 0.08
Us — 0.085-21.50 0.11
Tt 5 0.070-21.85 0.02
5 4 0.065-21.25 0.12
SG 5 0.025-21.50 0.10
s 0.030-13.30 0.08
Ca 3 13.30-20.30 0.60
6 0.050-16.G0 0.12
Co 3 16.00-20.40 0.60
Vise, 7 0.035-21.45 G.10
Viscg 6 0.040-21.35 0.065

Viscg = 3.375163 = P «x(0.3916208) + 11.8
2.207 MPa < P £ 5.480 MPa

Viscg = 0.9169410 « F ++(0.7644731) + 15.0
5,480 MPa < P < 9.585 MPa

Viscg = 5.030544 «exp(0.5045239 = P) + 12.0
9.585MPa < P < 14.351 MPa

Viscg = 0.4423761 xexp(0.1458726+ P) + 18.8
14.351 MPa < P < B1.385MPa

Viscg = 0.01082229 =exp(0.30719i8+« P) + 22.2
18.385 MPa < P < 20.347MTa

Viscg = 6.6753655E — 6 +exp(0.6347700=+ P) + 25.1
20.347 MPa < P < 21.25 MPa.

SUMMARY

The functicns presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below 1b to just below the cnitical
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The
ranges and accuracies for each property are summarized in table 2. It should be noted that internal
energy, U, can be calculated using the correlations for specific volume and specific enthalpy and
the equation {/ = H — P¥. This yields an error of <G.11%.
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Table 2. Summary of approximation functions

Property No. of functions Range of use [MPa] Worst accuracy {%)]
o 7 0.075-21.50 0.14
D, 7 0.085-21.50 0.22
hy 6 0.075-21.70 0.10
b 7 0.075-21.55 0.066
U, — 0.075-21.50 0.08
Us — 0.085-21.50 0.11
T 5 0.070-21.85 0.02
5 4 0.065-21.25 0.12
S s 0.025-21.50 0.10
5 0.030-13.30 0.08
Coc 3 13.30-20.30 0.60
6 0.050-16.00 0.12
Coo 3 16.00-20.40 0.60
Vise, 7 0.035-21.45 010
Viscg & 0.040-21.35 0.065

Viscg = 3.375163 P +»(0.3916208) + 11.8
2.207 MPa < P < 5480 MPa

Viscg = 0.9169410+ P ««(0.7644731) + 15.0
5.480 MPa < P < 9.585 MPa

Viscg = 5.030544 «exp(0.5045235« 2) + 12.0
9.585 MP2 £ P < 14.35! MPa

Viscg = 0.4423761 xexp(0.1458726« P) + 18.8
14.351 MPa < P < 81.355 MPa

Viscg = 0.01082229 »exp(0.3071918 « Py + 22.2
18.385 MPa < P < 20.347 MPa

Viscg = 6.6753655E — Gxexp(6.6347700= £) + 25.1
20.347 MPa < P < 21.35 MPa.

SUMMARY

The functions presented in this paper allow rapid calculation of the thermodynamic properties
of light water for saturation conditions. Their range of use is from below 1b to just below the critical
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The
ranges and accuracies for each property are summarized in table 2. It should be noted that internal
energy, U, can be calculated using the correlations for specific volume and specific enthalpy and
the equation &/ = H — P¥. This yields an crror of <0.11%.
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APFENDIX

The Rate Form of the Equation of State

The develepment of a non-iterative equation of state for two-phase flow systems was recently
investigated (Sollychin er al. 1985; Garland & Sollychin 1988). At present, the equation of stare
is usually solved by iterative numerical techniques. By recasting the equation of state the time
derivative of P can be solved directly and the use of iterative methods can be eliminated. The
time derivative form of the equation of state was developed by considering an arbitrary volume
of two-phase fluid as a thermodynamic system where both phases are at saturation under a
uniform saturation pressure, P. By utilizing the total mass of the fluid, M, the totai enthalny
in the system, H, the volume of the system, V, and taking the derivatives of these quantities with
respect to time, one obtains [A.1] which is dependent on the initial pressure and on the rate of
change of mass, volume and enthalpy in the system:

dM dFH . d¥
Fu(P)-a'l'- + Fz(P)Et— + Fa(P)TI

dpP
A& T T M E(P) + ME(P) (A1)
where
Fi(PY=hgxv — b »vg,
Fy(P)=vg — e,
F)(P) = -(ho —hy),
dh dr
Fi(PY= o2 (vg — 1) = g7 (hg — i)
and
dn dv
F(P)= ?;(UG —ty; - a}&(hc —h).

This form involves combinations of the saturation values of specific volume and specific enthalpy
in iiquid and gas phases. and the derivatives of these properties with respect to pressure. Thus we
can incorporate the approximation functions described above 10 easily solve the equation of state
{1]. The derivatives are determined simply by taking the derivatives of the approximation functions
with respect 10 pressure.
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