
Chapter 3

The Point-Kinetics Equations

Detailed knowledge of the power distribution is very important for the reactor designer, as well
as for the reactor operator, who must on a continuing basis monitor the local power distribution
against the license limits and ensure the reactor-regu1ating-system performance. We have seen in
the previous chapter how to detennine the reference steady-state power distribution for a given
reactor configuration by solving the (energy-dependent or multigroup-formalism) time-independent
diffusion equation. We have also seen that, in t.lte absence of an external source, the eigenvalue of
the homogeneous problem allows us to quantify the difference between the postulated steady state
and a "critical" state.

When a perturbation is made to the reactor properties, the steady state no longer holds, and the
evolution of the neutron flux must be obtained from the time-dependent diffusion equation. In
general, perturbations are not unifonn in space. Since the migration length of neutrons is relatively
large and their mean lifetime relatively short, the effect of local perturbations on t/J{r,E,t) will
quickly propagate. In many cases, if the diffusion length is large and the perturbation not too
strong, there is a slight re-adjustment of the flux shape in a few milliseconds, after which the global
flux level will increase or decrease, depending on whether the perturbation has increased or
decreased kf1/' Under such conditions, where the flux shape varies little or slowly, one can predict
accurately tile evolution of the total reactor power as a function of the changes brought by the
perturbation to the average reactor properties, neglecting completely the shape changes. This is the
point-kinetics approximation, which will be discussed in this chapter.

We shall derive the point-kinetics equations in the most general fashion possible, i.e., as a
pWcul2r case of the factorization method applied to the time-dependent diffusion equation. This
factorization transforms the diffusion equation into two equations, one for the amplitude and
another for the shape. The point-kinetics equations are those which allow the calculation of the
amplitude.

We have seen in the previous chapter that a steady state is possible in only two distinct
situations: either in a critical reactor, or in a sub-critical reactor with an external source. We shall
treat these two initial conditions sepL"'ltely, and shall tenninate the chapter with the integral
fonnutation of the point-kinetics equatio:,s, since this fannutation allows the application of several
numerical-integration methods. The study of analytical and numerical solutions is left to the
following chapters.
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78 Introduction to Nuclear Reactor Kinetics

3. 1 General Formulation

The point-kinetics equations will be derived from the general space-time-kinetics equations, Le.
from the time-dependent diffusion equation (equation 2-35), reproduced here in continuous
notation:

1 iJq,
--;-(r,E,t) = (Fp - M) q,(r,E,t) + Sd(r,E,t) + S(r,E,t)
v ot

with:

Fp' = Zp(E)[ vp Xf(r,E' ,I} ,(r,E' ,I) dE

M, = -V.DV, + 1:" - [Xstr,E->E,,},(r,E ,'}dE

Sd = L Xd/c(E) Ak Ck(r,t)
k

S = arbitrary independent source

(3-1)

The delayed-neutron source 5t1 is distributed in the fuel regions (and in the heavy-water reflector
in the case of the HWR). It is a function of the local precursor concentration of each delayed­
neutron group, C1;' because the emission of delayed neutrons has its origin in the radioactive decay
of these precursors. The delayed-neutron source has its own spectrum in energy, XtII:' different
from the prompt-neutron spectrum Xp •

Equation 3-1 is coupled to the precursor equations (2-37), reproduced here:

~ -- - Atet!r,'} + [ dE vt/.tXf(r,E' ,1},(r,E' ,,}

(k = 1,2... K)

(3-2)

The direct solution of equations 3-1 and 3-2, generally in their multigroup fonn, is an aweSOlne
problem. A numerical solution of the space-time problem in its original form requires large
resources, given the system dimensions. The problem is even more complex when one takes into
account temperature and density feedback, which has an impact on cross sections during a
transient Among the methods which have been introduced to simplify the solution of the equations
of space-time kinetics, notable are the factorization methods, which will allows us to introduce
point kinetics in a rigorous manner.
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3.1.1 Flux Factorization
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In order to take advantage of the fact that the flux shape can vary more slowly than the
amplitude. we introduce the following factorization:

q,(r,E.t) = p(t) ",(r,E.t)

In multigroup notation, equation 3-3 takes the fonn

"'l(r,t)

4> = p(t). "'2(r,t)

'l'G(r,t)

(3-3)

(3-4)

Note that tltis factorization is very general. In fact, we have not assumed separability of the
space and time variables, since the shape function 'Pis allowed to vary with t, but in principle much
more slo\\lly than the amplitude function p. Substitution of this factorized fonn in the diffusion
equation leads to a new equation for the shape function V~ Mter dividing by p(t), we find

(3-5)

This equation will be coupled to a second equation for the amplitude p(t). which will be derived
below. We note that equation 3-5 is as difficult to solve as equation 3-1, even ifp(t) is assumed
known. The advantage of this formulation is that in principle the shape 'Pvaries much more slowly
with t than the amplitudep(t). The discretization in time of equation 3-5 then pennits an integration
step larger than that used to calculate the amplitude p. In view of the fact that the main numerical
effort resides in solving the shape equation. the separate solution of the shape and amplitude
equations can lead to substantial machine-time savings. This is the principle inherent in the
Improved Quasi-Static approach (Ott, 1969), which we shall discuss again in chapter 8.

The equation for the amplitude is derived by integrating equation 3-1 over the domain (r.E).
Since every point in the domain may not have the same importance, we first multiply the diffusion
equation by an arbitrary time-independent weighting function w(r,E), defined over the same
domain as q,.

In analogy with the steady-state production operator (equation 2-72), we define the following
operator F in the time-dependent case:

(3-6)



80 Introduction to Nuclear Reactor Kinetics

•

We must then make the following obselVations:

The operator F" represents the instantaneous source of prompt neutrons (at time t).
factorization 3-.1, we get

Fp4J(r,E,t) = pIt) %p(E)( dE' vp If(r,E',t) ty(r,E,t)

= p.Fp '"

With

(3-7)

• The operator F l does not represent the instantaneous SOW'Ce of delayed neutrons. The latter
arises from the decay rate of the precursors, and is equal to Sir,E,t), In fact, F tl is a
virtual, rather than real, source of neutrons. It is the source of delayed neutrons which
would be found at equilibrium at (r,E) if the reactor were in steady-state with the
instantaneous flux ¢(r,E,t). In view of the factorization, we can write

Fd,(r,E,t)

Spatial distribution of the
precursor creation rate, .J...~ _.,

= p(t) L Xd/c(E) (00dE vd/eX/(r,E' ,t) YI{r,E' ,t)
k Jo

= P'L Fd/eYl
k

= p·Fd ",
(3-8)

• In both cases, the sum over the fissionable isotopes is implicit, as in equations 2-21 and 2­
38. One must thus understand vl1= l;,{v,;>.

Let us substitute equation 3-6 into equation 3-1. We find

(3-9)

Substituting factorization 3-3 into equation 3-9. multiplying by w(r,E) anci integrating over the
domain, we find the following equation for the amplitude p(t), in the notation introduced in
equation 2-94:

(w,v-1",).dP + (W,V-1d
-:l
Yl ).p = (w,(F-M-Fd)"')'P + (W,Sd) + (w,S)

dt . of (3-10)

Let us examine the delayed-neutron source. We have

K
(W,Sd) = LAk (W,XdkCk)

k=1 (3-11)
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Equation 3-11 contains a weighted sum of precursors. We can find an equation or this sum by
pre-multiplying equation 3-2 by x.(E) [each tenn then becoming a function of (r,E,t)], multiplying
the result by w(r,E), and integrating over the domain. We fmd

(3-12)

We shall now define the following scalar quantities to simplify the notation. We first define the
relative precursor concentrations ct(t):

(3-13)

The left-hand side of equation 3-12 contains only the derivative of the numerator of Ct. To
obtain the derivative of ct ' we must include the derivative of the denominator, which includes the
derivative of the flux shape. Defming the relative shape function ~.,<t) according to

~",(t) =

(3-14)

we find that

(3-15)

We then define the relative external source s.(t) as

(3-16)

Using definitions 3-13 to 3-16, the amplitude equation 3-10 and the precursor equations 3-12
can then be written in the form

and
(3-17)

I~ = ~(t). p(t) - (.1.k + ~,,(t)). Ck(t) I (3-18)

.(k= 1,2... K)
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The following kinetics parameters have been introduced, in a notation whose significance will
become apparent later:

£..(t) =
A

and

~(t)
A

= ~ Pk (t)
k=1 A

= ~ w,Fdk '"
-1

k=1 W, V '"

(3-19)

(3-20)

3 .1. 2 Normalization Constraint

We note that no approximation has been made to this point. In place of the time-dependent
diffusion equation, coupled to the precursor equations, we have after factorization a system of
coupled equations consisting of an equation for the shape function (equation 3-5) and the amplitude
equations 3-17 and 3-18. These two systems are entirely equivalent.

The presence of p{t) in equation 3-5 and of ~/..t) in equations 3-17 and 3-18 ensures the
coupling between the equations. We note in addition that the parameters pIA and PIA in the
amplitude equations are functionals of the flux shape 'If, solution of equation 3-5. As we shall see
in chapter 8, a tremendous numerical advantage can be realized if the shape function varies slowly.
Indeed, in the quasi-static method, the shape equation is solved over macro-intervals, within which
the amplitude equations (i.e., the point-kinetics equations) are separately integrated, using a known
shape. Tne factorization thus introduces an additional degree of freedom, which can be used to
simplify the solution of the problem.

We note also that the relative normalization of p and '" is arbitrary, since both these quantities
are functions of time. An additional condition is required to fix the relative normalization. Tha.t is,
in the absence of a nonnalization constraint, all solutions of the fonn

q,(r,E,t) = p(t)· ",(r,E,t)

= (P(t) aCt)H~(~.t))

= p(t)· y,(r,E,t) (3-21)

(3-22)

where a(t) is an arbitrary function of time must be allowed. Note that the solution of the quasi-static
equations without a nonnalization constraint is in any case possible. Indeed, a unique solution is
obtained if a linear variation of the shape function within the macro-intervals is selected and the
corresponding value of ~/..t) is included in the amplitude equation (Monier, 1991).

In order to make the relative nonnalization unique and to transfer as much as possible of the
time variation from ,to the amplitude, the following normalization constraint iso-generally imposed,
limiting the variation with time of the shape function at each instant t:

( -1) = (W(f,E) "'(f,E,t») = K
w, V '" v(E) 0
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Kois an arbitrary constant. The effect of this normalization constraint on Y' is thus to limit the
temporal variations of the shape function. Another consequence of equation 3-22 is to remove the
function ~.,(t) from the amplitude equations. That is,

~Y'(t) = 0 (3-23)

Recall that imposing the normalization constraint does not constitute an approxunation. 'The
simultaneous solution of equations 3-5, 3-17, and 3-18, together with constraint 3-22 on Y',
affects the value ofp but not of the product; = p Y', which is conserved. Similarly, the solution of
; is independent of the choice for the weighting function w.

3.1.3 Amplitude Equations

The main approximation of point kinetics is the decoupling of the amplitude equations from the
shape equation. That is, the amplitude equations 3-17 and 3-18 are solved on the assumption that
the shape Y' is known. In the absence of a better prescription for Y', the approximate shape
function Vi is generally selected to be the initial steady-state distribution '/Fo.

The solution to the shape equation 3-5 will thus be replaced as follows:

Y'(r,E,t) .... fit(r,E,t) (genera! approximation)

.... Y'o(r,E) (point kinetics)

In view ofequation 3-23, the general point-kinetics equation can be written

(3-24)

and

ddtP = (.E..(t) - f.(t»). p(t) + ~ AkCk(t) + se(t)
A A k=1 (3-25)

(3-26)

where the kinetics parameters defined earlier are now computed with the approximate shape
function fi1 (equation 3-24):

.E..(t) =
{w. (F - At) fit}

A (w. v-1 y,)
(3-27)

1!..(t) =A

=
(3-28)
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Note that the choice for w was arbitrary in equations 3-19 and 3-20. With the introduction of
approximation 3-24, we now allow a difference between the approximate flux shape, iii, used to
calculate the amplitude, and the real flux shape, VI. It will thus be advantageous to choose a
weighting function which minimizes the error in p(t) due to the uncertainty in the shape, bVl = iii ­
lII. We shall examine the initial conditions of the time-dependent problem to guide us in the choice
of w, which will be kept constant throughout the transient.

3.2 Common Formulations of the Point-Kinetics Equations

. The main approximation of point kinetics consists in decoupling the amplitUde equations from
the shape equation, where the solution of the coupled system yields the exact solution of the
problem. The central approximation of point kinetics thus reduces to the selection of an
approximation iii (r,E,t) for the shape, subject to the nonnalization constraint 3-22.

We are seeking w determine the evolution of the flux amplitude p(r) in the reactor, springing
from the variations of tfJ(r,E,t), solution of diffusion equation 3-1 and of the factorization tP =p VI.
We shall obtain the amplitude by solving equations 3-25 and 3-26, together making up a system of
(K+1) ordinary differential equations. The solution of this system will essentially depend on the
time variation of the kinetics parameters 3-27 and 3-28, whose values result from the arbitraty
choices for the weighting function W and for the approximation Vi to the real shape VI.

The choice of weighting function will be dictated by the initial steady-state conditions. We have
seen in chapter 2 that only two situations allow a steady state: a critical reactor without an external
source, and a subcritical reactor with an external source. We shall examine these two situations
separately in the following sections.

3.2. I Formulation for an Initially Critical Reactor

We shall fU'St assume that the reactor is initially critical and without an external source. Thus,
s(t) = 0 in equation 3-25. An initial steady state implies that dp/dt = 0 and that dcJdt = O.
Consequently

(3-29)

We have therefore verified that the assumption of an initial critical state presupposes that

£..(0) = 0
A

(3-30)
On the other halld, we know that the initial steady state is described by the time-independent

diffusion equation 2-78:

(3-31)

where, in principle, Ao =1 since the reactor is assumed critical.
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In practice, even if the aitical configuration is known, we allow the calculated value of Ao to
differ from I, due to simplifications inherent in the model or to uncertainties in the cross sections
which describe the reactor. The initial conditions of the time-dependent problem are then

,(r,E,O) = p{O) 'l'o{r,E,O)

= Po "'o{r,E)

= 'o{r,E)

where '0 and "'0 are both solution of the time-dependent diffusion equation 3-31.

3.2.2 Dynamic Reactivity

(3-32)

(3-33)

The initial flux distribution is thus obtained from the time-independent diffusion equation. The
initial eigenvalu~ can be expressed exactly as the following Rayleigh's quotient (equation 2-117)

_ (,~, Ido ¢o)
A

o
- (i,Fo'o)

where ¢; is the· adjoint flux, solution of equation 2-110:
* * * of;

1#04'0 = Ao Fo'o (3-34)

The concept of static reactivity was introduced in the previous chapter as a measure of the
difference between the state of the system and a aitical state. The static reactivity, Ph defined as 1
- Ao. is given by the exact expression

Pso=
(,~,(Fo - Ido)~o )

(,~,Fo tPo)
(3-35)

Again, P.c is in principie equal to 0 since the reactor is initially critical. The exact value of p.c) is
not significant and should not affect the transient

The concept of reactivity as a measure of the difference between the steady state of the system
and a aitical state can be extended to time-dependent problems. We defme the dynamic reactivity in
a manner analogous to equation 3-35:

p(t) =

(3-36)

where ,(r,E,t) is the time-dependent flux (Le., the solution sought). and where the elements of
operators F and M (i.e., the cross sections) can vary with time. Let &l and AM be the changes to
the material properties in the reactor relative to the steady state, as functions of time. We shall write
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where

F = Fcrlt + tJ.Fo
It = Ito + tJ.Af (3-37)

(3-38)

We have therefore adjusted the initial fission operator to correspond to a critical reactor. That is
in fact the role of the eigenvalue Ao in equation 3-31. Correction 3-38 is thus introduced to make
the initial dynamic reactivity vanish:

p(O) = 0 (3-39)

3.2.3 Choice of Weighting Function

Let us return to equation 3-25. We saw in equation 3-29 that the effect of the parameter PIA is
initially balanced by the delayed-neutron source, SdO. The evolution of the amplitude will thus be
affected mostly by the variation of the parameter piA, at least at the beginning.

(3-40)

tJ.(£.1 =
A)

The choice of weighting function in equation 3-27 is made so as to minimize the error
introduced by the uncertainty in the flux shape, introduced by the approximate flux shape 1jI. Let
us examine the variation ofpiA introduced by the time variation of the shape after t =0, tJ.." = .,,-
I',. •
TO·

Imposing constraint 3-22 leads to

(3-41)
This allows us to write

=

(3-42)
We then get

(3-43)

where we have transposed the operator.
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We shall therefore choose the initial adjoint flux, ,;, for the weighting function;
*

w(r,E) = '0 (r,E)

and we then find, in view ofequation 3-32;
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(3-44)

(3-45)

This result indicates that the error committed as a result ofusing the initial shape to calculate the
kinetics parameter is of second order in the shape error, as long as the initial adjoint flux is used as
weighting function. That is,

E-(t) =
A

=

(3-46)

We can thus evaluate the kinetics parameter during the transient by using an approximation Vi
to the shape, as long as tbe initial shape '1'0 is the solution to the tL1llC-independent diffusion
equation, ¢(r,E) = Po' 'l'o(r$). The usual appioximation in point kinetics is 10 assume the shape is
unchangedfrom its initial value;

t;(r,E,t) = '11o(r,E) (3-47)

Finally, note that the stationary character of the parameter pIA with respect to arbitrary
variations in the shape applies equally well to the dynamic reactivity, whose numerator is identical.

3.1.4 Conventional Forms of the Point Kinetics Equations

While the amplitude equation contains in reality only two kinetics para..1lleters, as we saw earlier,
the conventional form of the point-kinetics equations shows three parameters, by explicitly
including the dynamic reactivity as one parameter in the equation. This convention goes back to the
earliest days of reactor theory, and is very difficult 0 abandon, as pointed out by Henry (1975).

Let us arbitrarily introduce the following scalar quantity F(t);

F(t) = ( ~~ , F tit)
(3-48)

F(t) is a weighted sum of the fission source. Its variation in time is due only to changes in the
fission cross sections, provided the shape iii is restricted to its initial value as in equation 3-47.
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(3-49)

= (t/J~ ,A,oFo "'0)
= Fo

F(D)

Note that the initial value of the production cross sections has been adjusted to make the
dynamic reactivity vanish:

The value ofF(t) depends also on the nnnnalization constraint 3-22 on the initial shape:

(
* -1 )t/Jo' V "'0 = Ko

(3-50)

Multiplying and dividing equation 3-46 by F(t) gives

E.(t) =
A

P(t) 1/A(t) (3-51)

We have in this way separated the parameter pIA into two components, the dynamic reactivity
p(t) and a new parameter, A(t), which we shall call the mean prompt-neutron lifetime:

A(t) =
(3-52)

Treating the parameter f31A (equation 3-28) in a similar fashion, we find

{Jk (t) =
A

(3-53)

We have in this way introduced the new parameter (j(t), which we shall call the effective
delayed-neutron fraction:

K
(J(t) = :E (Jk(t)

k=1

= K (t/J~, Fdic t/J)

k~1 (;~.F;)
(3-54)
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(3-55)

With this separation of parameters, the amplitude equation 3-25 can now be written (in the
absence of an external source)

A(t): (t) = [pet) - /J(t)] pet) + Sd(t)

where we have shown explicitly the delayed-neutron source tenn, sit), which appears in a fonn
relative to F(t), weighted by the adjoint

=

(3­

56)

In the absence of an external source, the conventional fonn of the kinetics equations is therefore
the following:

dp (t) = [p<t)-P(t)]P(t) + fAkCk(t)
dt A(t) k=1 (3-57)

dCk (t)
dt

= - A C (t) + Pk(t) pet)k k A(t)

(k=1,2... K) (3-58)

where the kinetics parameters are given by equations 3-36, 3-52, and 3-54.

The dependent variables Ct associated with the precursor concentrations are dermed in equation
3-13:

= (tP~,XdkCk)
Ko

(3-59)

Equations 3-58 and 3-59 represent the most frequently used fonn of the kinetics equations,
which we shall label the C notation. As pointed out by Ott (1985), it may be preferable to use a
different notation for the precursor dependent variables, a notation relative to the fission rate rather
than to the constant K". From equations 3-48, 3-50, and 3-52 we observe that

Ko = F(t)·A(t)

= F(O)·A(O) = Fo ' Ao (3-60)
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A second notation. which we shall label , notation. makes use of the following variables:

(3-61)

The variables ct and , are proportional to one another since, from equation 3-60.

(3-62)

These quantities both reflect the evolution of the delayed-neutron precursors in the reactor. The
choice of a different notation leads to a different fonn of the kinetics equations. The conventional
notation (notation c) is the one leading to equations 3-57 and 3-58. In the 'notation, the delayed­
neutron source din equation 3-56 becomes

and the amplit~de equations are written

(3-63)

dp (t) =
dt

d'k (t)
dt

[
P(t)- fJ(t)]P(t) + _1 ~Ak'k(t)

A(t) Ao k=1

= - Ak'k(t) + F(t) fJk(t) p(t)
,co

(k = 1,2... K)

(3-64)

(3-65)

3.2.5 Formulation for an Initially Subcritical Reactor

The derivation of the amplitude equations for the case of an initially subcritical reactor is
analogous to that for the previous case. The main differences lie in die presence of an external
source, S(r,E,t), in the diffusion equation, and in the choice of weighting function, which must be
made appropriately.

L, the case of a critical reactor, the steady state is a homogeneous problem and the reactivity is
expressed as a bilinear quotient (Rayleigh's quotient) with the property of stationarity with respect
to a.-ti.trary variations in the flux shape and in the weighting function, provided the weighting
function is the solution of the adjoint operator. Since the latter is unique, the definition of the
parameters is exact in equations 3-36, 3-52, and 3-54, and the error iiiade in using an
approximation Vi to the shape is of second order if the initial shape is the solution '1'0 to the time­
independent diffusion equation.
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We must now choose a weighting function w and an approximation iii to the shape which are
appropriate to. We would like to do this while preserving the stationary property of the reactivity,
so that the amplitude equation may have the same properties as equation 3-57 or 3-64.

The subcritical steady state implies the presence of an independent source in the reactor. In the
case of the critical reactor, the adjoint flux is a natural choice for the weighting function. In the case
of the subcritical reactor, the problem is no longer homogeneous and the adjoint flux no longer
unique. Indeed, in the "direct" problem, the flux level in the reactor is not arbitrary, but is instead
tied to the source level. However, fin the adjoint problem, the adjoint flux depends on the
defmition of the adjoint source, which is arbitrary from the start. In fact, the adjoint source cannot
be tied to the external source, which is by definition independent.

We have therefore
(3-66)

* * * *
(Mo - Fo )'50 = So = Xdet

(direct)

(adjoint)
(3-67)

where XM , is a distribution function characteristic of the system. Its choice is arbitrary. It may for
instance be a cross section or cross sections pennitting the evaluation of some reaction rate in the
reactor, or else a detector reading (hence the subscript det). In general, a linear functional of the
flux can be used (Stacey, 1974):

(3-68)

The adjoint fun(,tion '.0 can be used to derive a variational principle for Rd." which will be
stationary with respect to arbitrary variations in the flux 0'0. Evidently, '.0 is not uniquely
defined for a given subcritical reactor. It depends on the detector position or on the definition of the
characteristic functional. To solve this problem, it is easier to use as weighting function the adjoint
of the inititll problem, rendered homogeneous by the removal of the source. This homogeneous
problem is described by

(3-69)

The adjoint equation for this homogeneous problem is unique and independent of the external
source:

We note that

* * *
(Mo-AoFo)'.to = 0 (3-70)

(3-71)

Indeed, only '.0 has physical significance. It is the initial flux distribution in the reactor, in the
presence of the source. On the other hand, 'W is a solution of the homogeneous rime-independent
equation, whose fundamental eigenvalue can be quite different from unity. The distribution 'UJ is
therefore more virtual than real: it is the steady-state distribution one would find in the reactor in the
absence of the source, if the mean number of fission neutrons were artificially increased (since Ao >
1). In addition, the nonnalization of ;'" is arbitrary. Note however that the more A.o approaches I,
the smaller the source must be for a steady state to exist. It can thus be shown that the non­
homogeneous solution tends to the homogeneous solution and that it can be obtained from a
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perturbation al:x>ut the critical state (Bruna, 1990). Generally speaking, the homogenous adjoint

';0 is unique and linearly independent of the initial flux distribution '.00
The previous fomtulation of the amplitude equations for the critical case is independent of the

initial conditions. The equations for an initially subcritical reactor are obtained in precisely the same
way, except that the adjoint of the initial fundamental mode, f'u, is used as weighting function in
the evaluation of the kinetics parameters 3-36, 3-52, and 3-54:

*w(r,E) = f'A.o(r,E) (3-72)

. We shall also have to account for the presence of the external source in the amplitude equation.
Note that the independent SOUl'Ce (equation 3-16) may be written in tenns of the prompt-neutron
lifetime:

= (f'~.S) (f'~o.F"')
(f'~o. F",r (f'~o. v-1

",)

. sit) ,. 1/.1(t) ,

(3-73)

We have therefore introduced the relative (to the fission rate) external SOUl'Ce s(t):

For the initially subcritical reactor, we find therefore in Cnotation:

dp (t) = [pet) - /3(t)]P(t) + _1LAkCk(t) + set)
dt A(t) Ao k A(t)

(3-74)

(3-75)

dCk (t) =
dt (3-76)

where the parameters p, /3, and A are given by equations 3-36, 3-52, and 3-54, with tpo replaced
by f'40 and F(t) replaced by Fit), defined as

(3-77)
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The dynamic reactivity for the initially subcritical reactor can then be written
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p(t)
= (,~,(F -AI)",)

('~o. F "')
(3-78)

The operators F and M are time dependent. Relative to the initial steady-state values, we can
define in general

F = Fo + AF

M = Mo + AM (3-79)

Note that, in contrast with equation 3-37, it is no longer necessary to adjust the production
cross sections to make the initial reactivity vanish. Indeed we accept that the initial reactivity is
negative, since the reactor is subcritical. It can easily be shown that the initial value of p(t) is equal
to the static reactivity (equation 3-35), regardless of the initial sh8.pe iif 0 used:

p(O) =
*'J..o. Fo i{t0

( i{to. (F; - M;),;o )
(3-80)

= = 1 - AD
( i{to. F;'~o)

= Po

As could have been expected, we note that the expression for the reactivity (equation 3-78) does
not contain the independent source S. because, in a reactor. reactivity is always defined
independendy of the source.

We shall now show that the dynamic reactivity (equation 3-77) is stationary with respect to
arbitrary variations in the shape function, when these are defined relative to the initial steady-state
distribution 'If.o. H this is the case. then it will be advantageous to use the initial steady-state
distribution with source as an approximation ofthe shape in the evaluation of the parameters:

i{t(r,E.t) = 'l'so(r.E)

= _1 . tPso(r,E)
Po (3-81)

Let us consider the time variation of the dynamic reactivity. It is written relative to the initial
value Po:

p(t) = Po + c5p(t) (3-82)
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We can write 6p(t) in terms of the variations in the operators by using the exact perturbation
formula 2-123 for the reactivity change:

("~o ' (AoL1F - L1Af)"')
6p(t) = F). (t)

(3-83)

It can be shown that equation 3-83 is stationary with respect to arbitrary variations of ." about
the initial state "'10' solution of the initial homogeneous problem (that is, the real flux in the reactor
with source). Define

.,,(r,E,t) = "'so(r,E) + L1.,,(r,E,t)

By writing explicitly M = F - F o and .MI = M - M o, equation 3-83 can also be written

(3-84)

6p(t)
= (q,~o,(AoF-M)"')

F). (t)
(3-85)

We substitute equation 3-84 into 3-85 and find

6p(t) = F).1(t) {(¢~o,(AoFo-Afo}'Yso)

+ (q,~o' p"oL1F - L1M)."so)

+ (q,~o' (AoFo - Mo )Avr)

+ (q,~o,(AoAF -AM)A.,,) }
(3-86)

The fust and third terms on the right-hand side cancel, as a result of Llte choice of weighting
fuilction 3-70. TIle second term constitutes the largest part of the perturbation formula for the
IeaCtivity. The fourth term includes differences between the operators and between the flux shapes
(the flux variation). Each of these differences is 0 initially, and then evolves during the transient.
TIle fourth term is therefore quadratic in nature, and we can conclude that the reactivity formula 3­
85 possesses the same property of stationarity as the formula for the initially critical reactor
(equation 3-36), as long as

• iii is indeed the initial flux distribution "'10' i.e., the solution of the non-homogeneous problem
with source So present;

• the adjoint to the initial homogenous problem (source removed), q,~o, 'is used as weighting
function in the calculation of the kinetics parameters.



3. The Point-Kinetics Equations 95

3.3 Point Model and Interpretation of the Kinetics Parameters

The difference between the two systems of (K+I) ordinary coupled differential equations which
we derived for the initially aitical reactor stems from the (arbitrary) choice ofdependent variable for
the precursors. The first fonn, which derives from the choice of c. (equation 3-59) as dependent
variable, is in much wider use than the second form, which derives from the choice of 'I: (equation
3-61). We shall nonetheless retain the latter, because it will facilitate the introduction of simplifying
assumptions in chapter 5.

The kinetics parameters p, P, and A, defined above, are all ratios of bilinear products. They
are all homogeneous in the flux orin the flux adjoint. Finally, we note that they all include F(t) in
the denominator. The choice of the scalar function F(t) in the denominator is purely one of
convention. It was made so as to express tIle dynamic reactivity P in the same form as the static
reactivity (equation 3-35). On the other hand, note that, after dividing the amplitude equation by
A(t), F(t) disappears from each of the terms. This means that the solution p(t) of the kinetics
equation does not depend on F(t), nor in fact of any other denominator which could have been
chosen in place ofF(t).

Indeed, as shown by our general equations 3-25 and 3-26, only two parameters determine the
evolution of p(t). These parameters are the two ratios pIA and PIA formed from the three usual
parameters. The individual values of p, /3, and A are in principle arbitrary, in view of their
denominator. The direct consequence of the conventional approach is that the three kinetics
parameters cannot be individually measured. In fact, kinetics measurements can provide only
values of ratios between these parameters (Ott, 1985).

On the other hand, each of the three parameters can be assigned a physical interpretation which
allows an easier comparison of the kinetics properties of different reactor types. Historically, the
formulation of point-kinetics models has always made use of the three parameters, and we shall
follow this convention in the rest of this book.

3.3.1 "Point'S Reactor Model

The kinetics parameters p, P. and A are integral quantities applying over the entire domain
(r,E); they are functionals of the flux shape lfI{r,E,t). If we evaluated VI by solving equation 3-5,
we could calculate the kinetics parameters explicitly, and the evolution of the neutronic power, p(t),
could be known precisely from the exact point-kinetics equations.

The main approximation in obtaining the point-kinetics equations from the exact equations for
the amplitude p(t) has been to neglect the time variation of the shape. One usually uses the initial
flux shape to calculate the kinetics parameters:

yt(r,E,t) = Vlo(r,E) = l/Jo(r,E)
Po (3-87)

Two additional approximations are often made in the "point" reactor model:

• TIle arbitrary denominator F(t) is replaced by its initial value:

(3-88)
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• The quasi-steady-state delayed-neutron source, FA, is replaced by its initial value:

(3-89)

These additional simplifications have the following consequences:

1. If we substitute equations 3-87 and 3-88 into equation 3-86, the "exact" fonnula for the
reactivity becomes a perturbation fonnula of first order (equation 2-124):

2. Substituting Fo for F(t) in equation 3-52, we get

A(t) ~ Ao = ~o = A
o

Fo 1-- ~

F(t)

(3-90)

(3-91)

(3-92)

3. Approximation 3-89 leads to the neglect of the (weak) time dependence of the effective delayed­
neutron fraction:

(3-93)

We find in this way the equations for the simplified point model, which is compared in Table
3.1 with the exact point-kinetics equations for the case of the initially critical reactor.

Table 3.1 The Point Kinetiks Equations

ExACT EoU.~TlONS SIMPLIFIED POINT MODEL

C Notation

~t) = [P(t~(~(t) ]p(t) + fAkCk(t) [p(t~-P]P(t) + fAkC/c(t)
dt

dck (t) = -A C (t) + pl'(t) P(t) -Al'Cl'(t) + Pk p(t)
dt k l' A(t) A (3-94a)

z Notation

~t) = [P(t~~(t) ]P(t) + ~o fAkCk(t) [P<t)-P]P(t) + 2:l:AkCk(t)
dt A Ak

d'l' (I) F(t)
- AkCk(t) + Pl'P(t)= -A"'l'(t) + yP,,(t) p(t)

dt 0 (3-94b)
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In the simplified-paint-model equations, the only kinetics parameter which varies significantly
with time is the dynamic reactivity p(t). The other parameters are assumed constant. Note in
particular that the precursor equation in the , notation becomes independent of A. The discussion
which follows allows us to evaluate the validity of the approximations which have led to the
simplified point model.

3.3.2 Interpretation of the Parameters

a) Dynamic reactivity, p(t)

The reactivity p(t) which appears in equation 3-36 is called the dynamic reactivity, in contrast with
the static reactivity introduced in the preceding chapter (equation 2-118):

p(t)

Dynamic reactivity

= (~~, (F -M)V')

(~~,FV')

Static reactivitY

= ( ~; , (F - M)~)

(~;,F~)

These two formulas appear identical. Bot!l expressions contain reaction rates weighted by the
flux adjoint. However, the essential difference between the two expressions lies in the fact that p(t)
is calculated from the instantaneous production rate in the reactor, which is a function of the time­
dependent flux ¢(r,E,t), as it manifests itself during the trclIlsient, whereas PJ. is calculated from a
steady-state flux, where the delayed-neutron source is in equilibrium with the nux. More precisely,
the latter is the fundamental mode of type Aof ta'te perturbed system, ¢(r,E) = ~~(r,E). In the case
of the dynamic reactivity, f; is the adjoint for the initial homogeneous problem, whereas in the
case of the static reactivity, it is the adjoint of the flux in the unperturbed system.

The initial adjoint flW( is used as weighting function in the derivation of the equations in order
to limit the error resulting from the uncertainty in the shape function. As we have seen in the
previous chapter, the use of the adjoint flux as weighting function in the calculation of the static
reactivity of the perturbed system removes effects of first order in the variation of the flux shape,
LlV', caused by the perturbation. The resulting error in P. is thus of second order (Le., stationary)
about the reference (unperturbed) system.

The stationarity properties of the formula for the reactivity are even more important in kinetics
problems because

• the spatial distribution, and the spectrum in energy, of the flux can vary with time, V'=tp(r.E,t);
• the full time dependence of the shape V'is in general more difficult to calculate than a few time­

independent flux shapes.

This explains the advantage of writing the dynamic reactivity in the same form as the static
reactivity (by dividing the reaction rates by F(t) and weighting with the adjoint).
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The dynamic reactivity may be considered the most important kinetics parameter, because its
variation is usually the source of changes in neutronic power. Indeed, in contrast with the other

~" parameters, the reactivity contains the neutron loss tenn, which is associated with control
mechanisms and which is very sensitive to temperature effects. Reactor perturbations giving rise to
transients are thus generally caused by variations in p.

We note also that reactivity has no units, since it is a ratio of reaction rates. Its valu~ lies in the
following interval:

_00 < pet) < 1,0 (3-95)

. In the positive domain, when the reactor is supercritical, the value of p is nOrmally very small
for a power reactor, because the reactor is not allowed to stray far from criticality. Usually,
positive values of reactivity are of the order of 0.001 or less. For this reason, reactivity is often
expressed in mi.lli-k (mk), the value being obtained by dividing P by 1000. Another unit, often
used in Europe, is the pcm (part per hundred thousand).

b) Effective Delayed-Neutron Fraction, fJ(t)

As its name suggests, the "effective" delayed-neutron fraction fJ(t) is linked to the physical
constants of each fissionable isotope which measure ta;e fraction of fission neutrons produced by
the decay of certain fission products. We observe indeed that the parameter fJ(t) in equation 3-54
would reduce to the physical delayed-neutron fraction only if the reactor were infinite and unifonn
and contained only one fissionable isotope.

The following points are worth remembering:

• The operator F.. in the numerator ofequation 3-54 implicitly includes a sum over all fissionable
isotopes. Based on the (fission) reaction rates, the effective value /3(t) thus takes into account
the distribution of fissionable material in the reactor:

Fdk 1fl(r,E,t) = L Xdki(E) roodE' vdkiIfi(r,E',t) ",(r,E',t)
i J0 (3-96)

Since the delayed-neutron fraction varies significantly from one fissionable isotope to another,
the effective delayed-neutron fraaion can vary with fuel burnup. For example, in a CANDU
reactor, most of the fresh fuel in the initial core contains only natural uranium*, with thennal
fissions in 23SU amounting to 97% of all fissions. After several months at full power, when the on­
power refuelling rate has reached equilibrium, a large number of fuel bundles contain plutonium
isotopes (mostly 239Pu). In the "equilibrium core", about half of all fissions are in the fissionable
plutonium isotopes. Since {3P••2J9 < {3U.2JS' there is a significant decrease in the effective delayed­
neutron fraction in a CANDU reactor as the reactor approaches refuelling equilibrium (-6 full­
power months after startup). During this period, the effective fraction in a CANDU 6 decreases
typically from 0.0076 to 0.0059. A smaller decrease will be observed in light-water reactors e3SU
fissions remain the largest part).

*A small number of depleted-fuel bundles may be used.
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• Weighting by the adjoint is essential because, in addition to weighting the spatial distribution of
delayed-neutron precursors, the energy dependence of the adjoint weights the delayed-neutron
emission spectrum appropriately. We can judge the importance of this correction by comparing
in an approximate way two very different systems, for example fast-neutron reactors and
thermal-neutron reactors.

To simplify, let us assume that the adjoint is separable:

Substituting this approximation in equation 3-54, we find

f.oodEXdk(E)tp~(E) ( dV 1/J~(r,l) (00dE' vdkIf(r,E',I) .,,(r,E',I)
o Jv Jo

(3-97)

which may be simplified further by writing

(3-98)

The spectral correction r4k takes into account the importance of the delayed-neutron spectra
relative to the total spectrum:

rdk =

(3-99)

We note:
East reactors

0.80 < r. < 0.85

TIlennal reactors

1.0 < rdk < 1.25

1lle selection and location of fissionable and fertile materials and of the moderator in the reactor
therefore has a great influence on the neutron s~..,ctrum, and consequently on the effective delayed­
neutron fraction.
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For example, in a fast reactor, the average importance «P; of the delayed neutrons is 18%
smaller than that of all fission neutrons (Ott, 1985). In particular, the energy of delayed neutrons at
emission is in general lower than the fast-fISsion threshold in 23 U, which CQIltributes more to the
overall fission rate than in a thennal reactor. In addition, the value of the reproduction factor 11
increases with the incident-neutron energy, which tends to confer greater importance to X than to
x.,. The reproduction factor is defined as

(E) = v(E) uf(E)
11 ua(E) (3-100)

. The spectral correction therefore reduces the effective value of p in fast reaCtors. This effect is
compensated in part by the spatial weighting when the reactor is heterogeneous (core and mantle).
Indeed, with the fertile material concentrated in the mantle (to increase the production of 239pU), the
neutron spectrum is softer at the core-mantle interface than at the center of the core. Consequently,
the rate of fast fission in 231U relative to the fission rate in 239pU, RplR/9' is higher at the centre (::::
14%) than at the core periphery (- 8%) (Ott, 1985). Since the importance tfJo is also greater at the
centre, and since the delayed-neutron fraction is much greater in 23IU than in 239pU, the spatial
weighting by the adjoint tends to increase the effective value of pin afast reactor.

In the case of thermal reactors, the spectral correction tends to increase the effective value of p.
The adjoint spectrum «Po (as well as the flux) increases with decreasing E, as one approaches the
thennal-fission domain. Note that delayed neutrons have a greater importance than prompt
neutrons in a thermal reactor, because of a greater probability that delayed neutrons will escape
resonance absorption or leak out of the system as they are slowed down, since they are emitted with
a lower energy than prompt neutrons. The spectral correction is therefore greater than 1.0 in
thermal reactors.

This effect is more important in light-water reactors (REP, PWR) than in heavy-water or
graphite reactors. The latter are larger in size, and fast leakage is relatively smaller. In addition,
fast fission is more important in them (in CANDU, RplRftol .. 3%), which tends to decrease f3(t),
because delayed neutrons appear at energies below the fast-fission threshold in 238U. TIle
conclusion is that adjoint weighting is essential to obtain an accurate valuefor the effective delayed­
neutronfraction in light-water reactors. This effect is less important in CANDU reactors.

We finally note that rhe time dependence ofIXt) is generally weak, since it has its origin mostly
in effects of burnup or of refuelling. Since these effects manifest themselves in both the numerator
and in the denominator, the time variations of the fission cross sections will tend to cancel. On the
other hand, if the fuel is non-uniformly distributed in the reactor, with zones of significantly
different fissionable-isotope concentration, a large variation in the flux shape VI can significantly
change the value of p, which must be evaluated as a function of t. Since the main simplifying
assumption of point kinetics is to neglect changes in shape (equation 3-87), the additional
assumption 3-93 appears justified for the simplified point model.
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c) Prompt·Neutron Lifetime, A(t)

The last parameter, A(t), is usually called the prompt-neutron lifetime:

101

A(t) = = Ko
F(t)

(3-101)

As was the case for /X..t), the defmition of A(t) is conventional and its interpretation stems fonn
the arbitrary choice of F(t) in the denominator. In contrast to p and /3, A(t) has units of time, and is
generally expressed in seconds (s).

The name of this kinetics parameter goes back to elementary theory, which considers successive
neutron generations. The reason for the expression prompt-neutron li/eti"..e for A is that this
parameter measures the average length of time between the disappearance of a neutron (by
absorption or leakage out of the system) and the appearance of a neutron of the 2nd-following
generation. This time is not 0, since the fission neutron must traverse a certain distance (at speed v)
before being absorbed by a fuel nuclide. H A were 0, all the energy available from the fissionable
material in the reactor would be released instantaneously.

Let us fU'St consider a unifonn and infinite multiplying medium. The quantity 1/11 is the mean
free path for fission, i.e., the average distance travelled by a neutron in the medium between its
birth and a subsequent fission. Dividing by the neutron speed:

1 1_.- = Lit,
v If

we fmd the time interval Litj between the birth of the neutron and the fission which it causes. Since
each fission produces v neutrons, the prompt-neutron lifetime can be obtained by dividing by v:

A = Lit, ~
v

1

This simplified interpretation can be generalized to the finite reactor. Let us consider the case of
a critical reactor in steady state. The fission-neutron source is then simply

(3-102)

The numerator includes the shape normalization constant Krr Note that

is a weighted measure of the neutron population in the system, proportional to the treutronic power.
H "0 = I, we find the total number of neutrons (at critical equilibrium) in the reactor, Nrr
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By considering fission as the event separating two successive generations of neutrons, we can
say that the fission source can be obtained as follows:

R = NQ --fQ A Q

Total number of neutrons in the system

from which the name neutron lifetime for A o• Since the reactor is not necessarily critical, the flux
can vary as a function of time. By analogy. we say that A(t) represents the mean prompt-neutron
lifetime (since the precursor delay is not taken into account). In a sense. A(t) -is a measure of the
effective lifetime of the neutron population at time t.

One must not place too great an importance on the physical interpretation of A, which rests on
the concept of neutron generation. itself poorly defined. Let us remember, more importantly, that
A(t) is the parameter which multiplies the time derivative of the amplitude in the kinetics equation 3­
55. Consequently. its value is crucial to the prompt reactor period. Le.. it intluences directly the
response time of the reactor in strong perturbations, in which prompt neutrons dominate.

A(t) can vary between 10-3 s for thermal reactors and 10.7 s for fast reactors. As was the case
for the delayed-neutron fraction. the time dependence of A(t) is often negligible. On the other
hand. if the perturbation in question affects only the fission source. or else if the flux shape yt
varies rapidly during the transient. it is necessary to take into 8CCOWlt the time variation of A(t).



.1 The Point-Kinetics Equations 103

.; .4 Integral Formulation of the Equations

The kinetics equations can also be written in an integral fonn which lends itself to several
numerical integration methods or to certain approximations particularly useful in the treatment of
temperature feedback (Lemay, 1985). We shall therefore conclude this chapter by presenting the
integral fonn of the kinetics equations, attributed to Keepin and Cox (Keepin, 1960).

We shall retain the assumtxion of the simplified point model, in c notation. Consi~er flfSt the
precursor equation (3-58). For group-k precursor, it can be written

Integrating this equation from to to t, we fmd

Ck(t) = Ck(to)e-A.k(t-to ) + ( dt' 13k p(t') e-A.k(t-t')
J,o A

(3-103)

(3-104)

In the limit to ~ - 00, the tenn containing c,..<to} vanishes, because the precursors decay in a
finite time. We fmd therefore an expression for c,Jt} which contains implicitly the initial conditions:

Ck(t) = J' dt' 13k p(t') e-A.k(t-t')

-00 A (3-105)

With steady-state initial conditions for t < O. we find simply

Ck(t) = cka e-A.kl + 13k (' dt' p(t') e-A.k(I-I')
A Jo

with
13ko

cka = AkAa Po

We now inttoduce c,,(t} in the equation for p(r). by writing u = 1- t':

dp (t) = rp(t) - 13]p(t) + J!..[dU D(u) p(t - u)
dt L A A 0

(3-106)

(3-107)

(3-108)

The kernel D(u)du is the probability that a delayed neutron is emitted between u and u + duo for
a fission occurring at u = 0:

D(u) == L Ak fJk e-A.kU

k fJ (3-109)
The integro-differential equation 3-108 can be transfonned into an integral equation of the

Volterra type by substituting equation 3-106 in equation 3-57 and integrating the result by parts:

A(t) dp (t) = p(t) p(t) - itdu dp (u) f(t - u)
dt 0 du (3-110)
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where

The Laplace transfonn is defined as

£{f(f)} = F(s) = J:cit f(f) e-st

We have therefore

(3-111)

(3-112)

F(s) = It 13k
k s+ Ak

. The transfonn of equation 3-110 gives
(3-113)

A [sP(s)-Po] = £{P(t)p(t)} - F(s)·[sP(s)-po] (3-114)

since, according to the convolution theorem

£{f:du ~(f-U) f:!(U)} = F,(S)·F2(S)

We can now isolate P(s):

P(s) = Po + z(s)· £{P(t) p(t)}
s

where the function Z(s) is defined as
1

Z(s) = s[A +F(s)] =
1

(3-115)

(3-116)

(3-117)

Taking the inverse transform of equation 3-116, we obtain finally the integral formulation of the
kinetics equations:

P(t) = Po + f:du z(f-U)P(U)p(u) (3-118)

We note that the function Z(I) is the inverse ttansfonn of Z(s), the transfer function of the
reactor, to which we shan return in the next chapter.

(3-119)

K+1
z(t) = 1: An e-~.nt

n=1

Z(i) can easily be found from equation 3-117. Let K be the number of delayed-neutron groups.
The expansion in partial fractions can be written

K+1 .4
Z(s) = 1: -",,~

n=1 s + OJn

where the OJ. are the (K + 1) roots of the characteristic polynomial, the denominator of equation 3­
117. We shall Ieturn in the next chapter to the calculation of the coefficients All.
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J . 5 Conclusion

105

~--,

In this chapter, we have introduced the point-kinetics equations from the general equations for
diffusion by making a certain number of simplifying assumptions. The most important was to
assume that the perturbation introduced into the reactor affects the flux shape little and that its effect
is mostly on the amplitude, associated with the neutronic power.

This approximation is very restrictive, and the point-kinetics model has relatively limited
application. In order to imd a realistic time-dependent solution in practical cases, it will be
necessary to solve the problem in space-time. We shall return to this important aspect in chapter 8.

The reactor regulating system (RRS) typically consists of several control mechanisms
(absorbers) arrayed throughout the reactor. The relative movement of these devices allows a
reference flux distribution to be maintained in the reactor, while their average movement perfonns
global control. The aim of the RRS is thus generally to

• maintain the reactor critical for operation at constant power,
• provide small changes in reactivity to vary the power;
• ensure spatial control of the power distribution to avoid xenon oscillations from developing

(Appendix A).

Several transients associated with global reactor control can thus be studied with point kinetics,
since flux distortions will be small or localized. In many cases, the transient can be predicted with
accuracy from a given reactivity variation. Even for fast transients, point kinetics allows us to more
easily study temperature and void feedback, phenomena which must be included in fast transients
but which cannot easily be treated in space-time. Feedback will be discussed in chapters 6 and 7.

In the next chapter, we shall start to study situations where reactivity is constant but can change
suddenly. The following chapter will deal with the effect of a gradual change in reactivity,
conforming more closely to real displacements of reactivity devices in the reactor.

While the point model is relatively simple and reduces the generai problem to a coupled system
of (K + 1) ordinary differential equations, the numerical solution of the kinetics equations poses
particular problems. Indeed, the time scale associated with prompt neutrons is much shorter than
those associated with the delayed-neutron precursors. This particular property of the kinetics
equations can lead to the failure of many numerical schemes. This aspect will be discussed in
somewhat greater detail in chapter 7.


